当前位置: 首页 > news >正文

【Kafka】Kafka源码解析之producer过程解读

从本篇开始 打算用三篇文章 分别介绍下Producer生产消费,Consumer消费消息 以及Spring是如何集成Kafka 三部分,致于对于Broker的源码解析,因为是scala语言写的,暂时不打算进行学习分享。

总体介绍

在这里插入图片描述

  • clients : 保存的是Kafka客户端代码,主要就是生产者和消费者代码
  • config:保存Kafka的配置文件,其中比较重要的配置文件是server.properties。
  • connect目录:保存Connect组件的源代码。我在开篇词里提到过,Kafka Connect组件是用来实现Kafka与外部系统之间的实时数据传输的。
  • core目录:保存Broker端代码。Kafka服务器端代码全部保存在该目录下。

而一条消息的整体流转过程其实就是经过三部分,也就是Producer\Broker\Consumer。
因为是对主要核心流程的分析,所以只会截核心代码。具体后面细节,在说。
在这里插入图片描述

producer整体流程

对于Producer来说,其实就是几部分。

  • 初始化、发送流程、缓冲区

初始化流程

设置分区器

// 设置分区器this.partitioner = config.getConfiguredInstance(ProducerConfig.PARTITIONER_CLASS_CONFIG,Partitioner.class,Collections.singletonMap(ProducerConfig.CLIENT_ID_CONFIG, clientId));

设置重试时间,默认100ms,如果配置Kafka可以重试,retries制定重试次数,retryBackoffMs指定重试的间隔

 long retryBackoffMs = config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG);

获取Key和Value的序列化器

      // 序列化器if (keySerializer == null) {this.keySerializer = config.getConfiguredInstance(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,Serializer.class);this.keySerializer.configure(config.originals(Collections.singletonMap(ProducerConfig.CLIENT_ID_CONFIG, clientId)), true);} else {config.ignore(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG);this.keySerializer = keySerializer;}if (valueSerializer == null) {this.valueSerializer = config.getConfiguredInstance(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,Serializer.class);this.valueSerializer.configure(config.originals(Collections.singletonMap(ProducerConfig.CLIENT_ID_CONFIG, clientId)), false);} else {config.ignore(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG);this.valueSerializer = valueSerializer;}

拦截器

    // 设置拦截器List<ProducerInterceptor<K, V>> interceptorList = (List) config.getConfiguredInstances(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,ProducerInterceptor.class,Collections.singletonMap(ProducerConfig.CLIENT_ID_CONFIG, clientId));if (interceptors != null)this.interceptors = interceptors;elsethis.interceptors = new ProducerInterceptors<>(interceptorList);

其他参数

	   // 设置最大消息为多大,默认是1M 默认是16384this.maxRequestSize = config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG);// 设置缓存大小 默认是32M 默认是33554432 RecordAccumulator=32MBthis.totalMemorySize = config.getLong(ProducerConfig.BUFFER_MEMORY_CONFIG);// 设置压缩类型 可以提升性能this.compressionType = CompressionType.forName(config.getString(ProducerConfig.COMPRESSION_TYPE_CONFIG));this.accumulator = new RecordAccumulator(logContext,
       // 因为是通过缓冲区发送消息的,所以需要消息累计器RecordAccumulator.PartitionerConfig partitionerConfig = new RecordAccumulator.PartitionerConfig(enableAdaptivePartitioning,config.getLong(ProducerConfig.PARTITIONER_AVAILABILITY_TIMEOUT_MS_CONFIG));

初始化元数据

 // 初始化集群元数据if (metadata != null) {this.metadata = metadata;} else {this.metadata = new ProducerMetadata(retryBackoffMs,config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG),config.getLong(ProducerConfig.METADATA_MAX_IDLE_CONFIG),logContext,clusterResourceListeners,Time.SYSTEM);this.metadata.bootstrap(addresses);}

创建Sender线程,其中包含一个重要的网络组件NetWorkClient

	// 创建sender线程this.sender = newSender(logContext, kafkaClient, this.metadata);// 线程nameString ioThreadName = NETWORK_THREAD_PREFIX + " | " + clientId;// 封装起来 设置为守护线程 并启动this.ioThread = new KafkaThread(ioThreadName, this.sender, true);// 线程启动this.ioThread.start();

发送消息流程

发送消息的过程

    public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {// 执行拦截器逻辑ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);return doSend(interceptedRecord, callback);}

先执行拦截器,可以发现就是遍历拦截器,然后执行对应的onSend()方法。当我们想增加一个拦截器,直接实现对应的接口,重写onSend()方法,然后Kafka就会调用我们的onSend方法。通过提供一个拓展点进行使用。

    public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record) {ProducerRecord<K, V> interceptRecord = record;for (ProducerInterceptor<K, V> interceptor : this.interceptors) {try {interceptRecord = interceptor.onSend(interceptRecord);} catch (Exception e) {}}return interceptRecord;}

从Kafka Broker集群获取元数据metadata

// 从broker获取元数据clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), nowMs, maxBlockTimeMs);

对key和value进行序列化,调用对应的serialize的方法。

	  byte[] serializedKey;try {// 选择对应的序列化进行操作serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());} catch (ClassCastException cce) {}byte[] serializedValue;try {serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());} catch (ClassCastException cce) {}
 	// 选择具体的分区int partition = partition(record, serializedKey, serializedValue, cluster);// 消息缓存到RecoredAccumulatorresult = accumulator.append(record.topic(), partition, timestamp, serializedKey,serializedValue, headers, appendCallbacks, remainingWaitMs, false, nowMs, cluster);// 消息发送的条件// 缓冲区数据大小达到batch.size 或者linnger.ms达到上限后 唤醒sneder线程。if (result.batchIsFull || result.newBatchCreated) {log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), appendCallbacks.getPartition());this.sender.wakeup();}

Sender线程

	runOnce();long pollTimeout = sendProducerData(currentTimeMs);

在这里插入图片描述

在这里插入图片描述
缓冲区、

在这里插入图片描述

这篇讲解很详细 https://www.cnblogs.com/rwxwsblog/p/14754810.html

生产者核心参数配置

bootstrap.servers:连接Broker配置,一般就是xxxx:9092

key.serializer 和 value.serializer:对key和value进行序列化器,可以自定义,一般就是String方式

buffer.memory:RecordAccumulator 缓冲区总大小,默认32m。

batch.size: 消息会以batch的方式进行发送,这是一批数据的大小 默认是16K

linger.ms:发送消息的时机,如果没有达到batch.size or linger.ms的时间就会发送 默认是0ms 立即发送

acks: 0: 不落盘 1:只有leader落盘 -1(all) : leader和所有从节点持久化成功 默认是-1

max.in.flight.requests.per.connection:允许最多没有返回 ack 的次数,默认为 5

retries: 消息发送失败时,系统重发消息 默认值 2147483647

retry.backoff.ms:两次重试间隔 默认是100ms

enable.idempotence: 开启幂等性 默认true

compression.type: 压缩格式 默认是none

相关文章:

【Kafka】Kafka源码解析之producer过程解读

从本篇开始 打算用三篇文章 分别介绍下Producer生产消费&#xff0c;Consumer消费消息 以及Spring是如何集成Kafka 三部分&#xff0c;致于对于Broker的源码解析&#xff0c;因为是scala语言写的&#xff0c;暂时不打算进行学习分享。 总体介绍 clients : 保存的是Kafka客户端…...

深度学习笔记20_数据增强

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 一、我的环境 1.语言环境&#xff1a;Python 3.9 2.编译器&#xff1a;Pycharm 3.深度学习环境&#xff1a;TensorFlow 2.10.0 二、GPU设置…...

模板变量与php变量对比做判断

${item.create_name}如何与php变量对比 在PHP中&#xff0c;您可以通过将字符串内嵌到双引号中来将模板变量 ${item.create_name} 与PHP变量进行对比。如果您有一个PHP变量 $phpVariable 并且想要检查它是否与 ${item.create_name} 相同&#xff0c;您可以使用 str_replace 函…...

C语言 | Leetcode C语言题解之第485题最大连续1的个数

题目&#xff1a; 题解&#xff1a; int findMaxConsecutiveOnes(int* nums, int numsSize) {int maxCount 0, count 0;for (int i 0; i < numsSize; i) {if (nums[i] 1) {count;} else {maxCount fmax(maxCount, count);count 0;}}maxCount fmax(maxCount, count);…...

C语言复习概要(六)

公主请阅 1. 深入理解数组与指针在C语言中的应用1.1 数组名的理解 2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序的实现5. 二级指针6. 指针数组7. 指针数组模拟二维数组8.总结 1. 深入理解数组与指针在C语言中的应用 数组与指针是C语言的核心概念之一&#xff0c;理解…...

PyQt 入门教程(2)搭建开发环境

文章目录 一、搭建开发环境1、安装PyQt5与pyqt5-tools2、配置QtDesigner3、配置Pyuic4、配置Pyrcc 一、搭建开发环境 1、安装PyQt5与pyqt5-tools PyQt5&#xff1a; PyQt的开发库。Pyqt5-tools&#xff1a; 它是一个包含多种工具的工具包&#xff0c;旨在帮助开发者更方便地使…...

Flink Kubernetes Operator

Flink Kubernetes Operator是一个用于在Kubernetes集群上管理Apache Flink应用的工具。 一、基本概念 Flink Kubernetes Operator允许用户通过Kubernetes的原生工具&#xff08;如kubectl&#xff09;来管理Flink应用程序及其生命周期。它简化了Flink应用在Kubernetes集群上的…...

【最新华为OD机试E卷-支持在线评测】字符统计及重排(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...

springboot使用GDAL获取tif文件的缩略图并转为base64

springboot使用GDAL获取tif文件的缩略图并转为base64 首先需要安装gdal&#xff1a;https://blog.csdn.net/qq_61950936/article/details/142880279?spm1001.2014.3001.5501 然后是配置pom.xml文件&#xff1a; <!--处理缩略图的--><dependency><groupId>o…...

Pytorch——pip下载安装pytorch慢的解决办法

一、找到需要下载的pytorch链接 运行&#xff1a;pip install torch1.11.0cu113 torchvision0.12.0cu113 torchaudio0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113。然后得到&#xff1a; 我这里为&#xff1a;https://download.pytorch.org/whl/cu113/t…...

uniapp微信小程序调用百度OCR

uniapp编写微信小程序调用百度OCR 公司有一个识别行驶证需求&#xff0c;调用百度ocr识别 使用了image-tools这个插件&#xff0c;因为百度ocr接口用图片的base64 这里只是简单演示&#xff0c;accesstoken获取接口还是要放在服务器端&#xff0c;不然就暴露了自己的百度项目k…...

Vue3+TS项目---实用的复杂类型定义总结

namespace 概念 在TypeScript中&#xff0c;namespace是一种用于组织代码得结构&#xff0c;主要用于将相关得功能&#xff08;例如类、接口、函数等&#xff09;组合在一起。它可以帮助避免命名冲突&#xff0c;尤其是在大项目中。 用法 1.定义命名空间 使用namespace关键…...

尚硅谷rabbitmq2024 工作模式路由篇 第11节 答疑

String exchangeName "test_direct"; /! 创建交换机 人图全 channel.exchangeDeclare(exchangeName,BuiltinExchangeType.DIREcT, b: true, b1: false, b2: false, map: null); /1 创建队列 String queue1Name "test_direct_queue1"; String queue2Name &q…...

HTTP vs WebSocket

本文将对比介绍HTTP 和 WebSocket &#xff01; 相关文章&#xff1a; 1.HTTP 详解 2.WebSocket 详解 一、HTTP&#xff1a;请求/响应的主流协议 HTTP&#xff08;超文本传输协议&#xff09;是用于发送和接收网页数据的标准协议。它最早于1991年由Tim Berners-Lee提出来&…...

R语言医学数据分析实践-数据读写

【图书推荐】《R语言医学数据分析实践》-CSDN博客 《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com) R语言编程_夏天又到了的博客-CSDN博客 R编程环境的搭建-CSDN博客 在分析公共卫生数据时&#xff0c;数…...

JavaWeb环境下Spring Boot在线考试系统的优化策略

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了基于JavaWeb技术的在线考试系统设计与实现的开发全过程。通过分析基于Java Web技术的在线考试系统设计与实现管理的不足&#xff0c;创建了一个计算机管理基于Ja…...

ETL技术在金蝶云星空与旺店通WMS集成中的应用

金蝶云星空数据集成到旺店通WMS的技术案例分享 在数字化转型的背景下&#xff0c;现代企业对系统间的数据集成需求日益增加。本篇文章将以“组装入库>其他入库单-1”方案为例&#xff0c;详细解析如何通过轻易云数据集成平台&#xff0c;实现金蝶云星空与旺店通WMS之间的数…...

【力扣热题100】3194. 最小元素和最大元素的最小平均值【Java】

题目&#xff1a;3194.最小元素和最大元素的最小平均值 你有一个初始为空的浮点数数组 averages。另给你一个包含 n 个整数的数组 nums&#xff0c;其中 n 为偶数。 你需要重复以下步骤 n / 2 次&#xff1a; 从 nums 中移除 最小 的元素 minElement 和 最大 的元素 maxElement…...

机器学习拟合过程

import numpy as np import matplotlib.pyplot as plt# 步骤1: 生成模拟数据 np.random.seed(0) X 2 * np.random.rand(100, 1) y 4 3 * X 2 * X**2 np.random.randn(100, 1)# 步骤2: 定义线性模型 (我们从随机权重开始) w np.random.randn(2, 1) b np.random.randn(1)#…...

如何快速部署一套智能化openGauss测试环境

一、openGauss介绍 openGauss是一款开源关系型数据库管理系统&#xff0c;采用木兰宽松许可证v2发行&#xff0c;允许用户自由地复制、使用、修改和分发软件。openGauss内核深度融合了华为在数据库领域多年的研发经验&#xff0c;结合企业级场景需求&#xff0c;持续构建竞争力…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...