Python库numpy之三
Python库numpy之三
- # NumPy数组创建函数
- 二维数组创建函数
- numpy.eye
- 应用例子
- numpy.diag
- 应用例子
- numpy.vander
- 应用例子
# NumPy数组创建函数
二维数组创建函数
numpy.eye
词法:numpy.eye(N, M=None, k=0, dtype=<class ‘float’>, order=‘C’, *, device=None, like=None)
numpy.eye产生一个二维数组,对角线上的值为 1,其他位置的值为0。
变量说明
-
N,该参数类型是int
N是输出二维数组的行数 -
M,该参数类型是int, 是可选的
M是输出二维数组的列数。如果None,则默认为参数N -
k,该参数类型是int, 是可选的
对角线索引:
0,表示主对角线,
正值,表示上对角线,
负值,表示下对角线。 -
dtype,该参数类型是data-type, 是可选的
返回数组的数据类型 -
order,该参数类型是{‘C’, ‘F’}, 是可选的
输出数组的存储方式
‘C’,以行优先顺序存储在内存中,C 风格
’F‘,以列优先顺序存储在内存中,Fortran 风格 -
device,该参数类型是字符串, 是可选的
用于放置创建的阵列的设备。默认值:None。
仅适用于 Array-API 互操作性,因此如果通过,则必须为“cpu”。 -
like,该参数类型是array_like, 是可选的
允许创建非 NumPy 数组的引用对象。如果以参数like传入的数组支持 array_function 协议,则结果将由它定义。在这种情况下,它确保创建一个与通过此参数传入的数组对象兼容的数组对象。
应用例子
import numpy as npif __name__ == "__main__":m0 = np.eye(2, dtype=int)m1 = np.eye(4, k=0)m2 = np.eye(4, k=1)m3 = np.eye(4, k=-1)print(m0)print("-*-"*8)print(m1)print("-*-"*8)print(m2)print("-*-"*8)print(m3)
程序运行的屏幕输出
[[1 0][0 1]]
-*--*--*--*--*--*--*--*-
[[1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.][0. 0. 0. 1.]]
-*--*--*--*--*--*--*--*-
[[0. 1. 0. 0.][0. 0. 1. 0.][0. 0. 0. 1.][0. 0. 0. 0.]]
-*--*--*--*--*--*--*--*-
[[0. 0. 0. 0.][1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.]]
numpy.diag
词法:numpy.diag(v, k=0)
numpy.diag提取对角线或构造对角线数组。
-
v,该参数类型是类数组
如果 v 是二维数组,则返回其第 k 个对角线的副本。如果 v 是一维数组,则返回 v 在第 k 对角线上的二维数组。 -
k,该参数类型是int, 是可选的
应用例子
import numpy as npif __name__ == "__main__":x = np.arange(9).reshape((3,3))y = np.diag(x)z = np.diag(y) print(x)print("-*-" * 8)print(y)print("-*-" * 8)print(z)x1 = np.arange(16).reshape((4,4))y1 = np.diag(x1, k=1)z1 = np.diag(x1, k=0)print("-*-" * 8)print(x1)print("-*-" * 8)print(y1)print("-*-" * 8)print(z1)
程序运行的屏幕输出
C:\>python numpy_6.py
[[0 1 2][3 4 5][6 7 8]]
-*--*--*--*--*--*--*--*-
[0 4 8]
-*--*--*--*--*--*--*--*-
[[0 0 0][0 4 0][0 0 8]]
-*--*--*--*--*--*--*--*-
[[ 0 1 2 3][ 4 5 6 7][ 8 9 10 11][12 13 14 15]]
-*--*--*--*--*--*--*--*-
[ 1 6 11]
-*--*--*--*--*--*--*--*-
[ 0 5 10 15]
numpy.vander
词法:numpy.vander(x, N=None, increasing=False)
生成范德蒙矩阵。
输出矩阵的列是输入向量的幂。幂的顺序由递增布尔参数决定。具体来说,当increase为False时,第i个输出列是输入向量按元素求N - i - 1次方。这种每行都呈几何级数的矩阵就是范德蒙。
- x,该参数类型是类数组
- N,该参数类型是int, 是可选的
- increasing,该参数类型是bool, 是可选的
应用例子
import numpy as npif __name__ == "__main__":arr = np.array([1, 2, 3, 5])m1 = np.vander(arr, N=3)m2 = np.vander(arr)m3 = np.vander(arr, N=3, increasing=True)print(arr)print("-*-" * 8)print(m1)print("-*-" * 8)print(m2)print("-*-" * 8)print(m3)
C:\>python numpy_7.py
[1 2 3 5]
-*--*--*--*--*--*--*--*-
[[ 1 1 1][ 4 2 1][ 9 3 1][25 5 1]]
-*--*--*--*--*--*--*--*-
[[ 1 1 1 1][ 8 4 2 1][ 27 9 3 1][125 25 5 1]]
-*--*--*--*--*--*--*--*-
[[ 1 1 1][ 1 2 4][ 1 3 9][ 1 5 25]]
相关文章:
Python库numpy之三
Python库numpy之三 # NumPy数组创建函数二维数组创建函数numpy.eye应用例子numpy.diag应用例子numpy.vander应用例子 # NumPy数组创建函数 二维数组创建函数 numpy.eye 词法:numpy.eye(N, MNone, k0, dtype<class ‘float’>, order‘C’, *, deviceNone, …...
postgresql 安装
一、下载 PostgreSQL: File Browser 下载地址 PostgreSQL: File Browser 上传到服务器,并解压 二、安装依赖 yum install -y perl-ExtUtils-Embed readline-devel zlib-devel pam-devel libxml2-devel libxslt-devel openldap-devel 创建postgresql 和目录 useradd …...
基于机器学习的天气数据分析与预测系统
天气预报是日常生活中非常重要的信息来源,能够帮助人们合理安排日程、预防自然灾害。随着数据科学和机器学习的快速发展,传统的天气预报方法逐渐向基于数据驱动的机器学习方法转变。本文将探讨如何构建一个基于机器学习的天气数据分析与预测系统…...
Java项目-基于Springboot的在线外卖系统项目(源码+说明).zip
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…...
ANSYS Workbench纤维混凝土3D
在ANSYS Workbench建立三维纤维混凝土模型可采用CAD随机几何3D插件建模后导入,模型包含球体粗骨料、圆柱体长纤维、水泥砂浆基体等不同组分。 在CAD随机几何3D插件内设置模型参数后运行,即可在AutoCAD内建立三维纤维混凝土模型,插件支持任意…...
【Vue】Vue3.0(十)toRefs()和toRef()的区别及使用示例
上篇文章:Vue】Vue(九)OptionsAPI与CompositionAPI的区别 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年10月15日11点13分 文章目录 toRefs()和toRe…...
中科星图(GVE)——使用随机森林方法进行土地分类
目录 简介 函数 gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed) 代码 结果 简介 使用随机森林方法进行土地分类的步骤如下: 数据准备:收集所需的土地分类数据,并对数…...
【蓝队技能】【C2流量分析】MSFCSSliver
蓝队技能 MSF&CS&Sliver 蓝队技能总结前言一、MSF1.1 流量分析1.2 特征提取 二、CS1.1 流量分析1.2 特征提取 二、Sliver1. 特征分析 总结 前言 不同C2工具的流量特征都有细微差别,学会分析方法后就可以进行分析 一、MSF 1.1 流量分析 MSF流量特征过于明显…...
不推荐使用Scilab作为MATLAB的开源替代
安装了Scilab2024.1.0,随便试了几分钟就发现有严重影响使用的Bug(也可能是就是这样设计的,有一个所谓的“暂停模式”),复现步骤:主界面上点击“Scilab示例”按钮,打开“演示”窗口,点击左侧列表中的“多项式…...
C++智能指针及其应用
C11之后出现了 shared_ptr 和 unique_ptr,这两个类都是基于RAII技术进行设计的 RAII 利用对象生命周期来控制程序资源(如内存,文件句柄,网络连接,互斥量等资源)的技术,具体地说,就是…...
06 算法基础:算法的定义、表现形式(自然语言、伪代码、流程图)、五个特性(有穷性、确定性、可行性、输入、输出)、好算法的设计目标
目录 1 算法的定义 2 算法的三种表现形式 2.1 自然语言 2.2 伪代码 2.3 流程图 3 算法的五个特性 3.1 有穷性 3.2 确定性 3.3 可行性 3.4 输入 3.5 输出 4 好算法的设计目标 4.1 正确性 4.2 可读性 4.3 健壮性 4.4 通用性 4.5 高效率与低存储量 1 算法的定义 …...
【红外传感器】STM32C8T6标准库使用红外对管
好好学习,天天向上 前言一、了解红外二、标准库的代码1.infrared.c2.infrared.h3.main.c4 现象 总结 前言 红外线:频率介于微波与可见光之间的电磁波。 参考如下 【STM32】标准库与HAL库对照学习教程外设篇–红外避障传感器 光电红外传感器详解&#…...
STM32L010F4 最小系统设计
画一个 STM32L010F4 的测试板子...... by 矜辰所致前言 最近需要用到一个新的 MCU: STM32L010F4 ,上次测试的 VL53L0X 需要移植到这个芯片上,网上一搜 STM32L010F4,都是介绍资料,没有最小系统,使用说明等。…...
AI 工具大赏:探索智能时代的得力助手
在当今这个科技飞速发展的时代,人工智能(AI)技术已经深入到我们生活的方方面面。从日常办公到创意设计,从学术研究到娱乐休闲,AI 工具正以其强大的功能和便捷的使用体验,成为人们不可或缺的得力助手。那么&…...
安通物流借助CRM重塑企业客户关系管理新格局
安通控股股份有限公司(以下简称"安通控股")是一家扎根集装箱多式联运物流产业的现代综合物流服务企业,致力于为客户提供绿色、经济、高效、安全的集装箱全程物流解决方案。 据Alphaliner排名统计,截至2023年10月,安通控股综合运力全球排名21位,位居国内内贸集装箱物…...
C++标准模板库--vector
vector 介绍 vector(向量)是一种序列容器,表示为可以改变大小的数组。vector中的元素使用连续的存储位置,这意味着也可以使用指向其元素的常规指针偏移量来访问任意元素,且与数组一样高效。但与数组不同的是ÿ…...
通信学习干货:运营商为什么要大力推广FTTR?
随着数字化时代的来临,互联网的需求不断增长,家庭网络也在不断演进。光纤到家(FTTH)已经成为提供高速互联网连接的标配,但随着技术的发展,我们迎来了FTTR(光纤到房间)技术࿰…...
【Spring篇】初识之Spring的入门程序及控制反转与依赖注入
🧸安清h:个人主页 🎥个人专栏:【计算机网络】,【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 文章目录 🎯初始Spring …...
OpenLayers:构建高质量的Web地图应用
OpenLayers:构建高质量的Web地图应用 文章目录 OpenLayers:构建高质量的Web地图应用简介为什么选择 OpenLayers?跨平台兼容性高性能渲染高度可定制化社区支持 安装与设置功能扩展矢量图层地理编码投影转换 交互与事件其他高级特性控制动画数据…...
Java比较两个Excel是否内容一致
领导每天让比较两个Excel中的内容,为了节省工作效率多摸鱼,就写了个java接口,通过上传两个文件 进行代码比较得到详细的比较结果(这个需要自己根据日志二开) 目前只实现了比较功能 话不多说直接上代码,具体看注释 package com.yx…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
