中科星图(GVE)——使用随机森林方法进行土地分类
目录
简介
函数
gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed)
代码
结果
简介
使用随机森林方法进行土地分类的步骤如下:
-
数据准备:收集所需的土地分类数据,并对数据进行预处理,包括缺失值处理、数据标准化等。
-
特征选择:根据土地特征的重要性选择合适的特征,可以使用特征选择算法如信息增益、方差选择等。
-
数据集划分:将数据集划分为训练集和测试集,通常采用70%的数据作为训练集、30%的数据作为测试集。
-
随机森林建模:使用训练集数据建立随机森林模型。随机森林是由多个决策树组成的集成学习模型,每个决策树通过对一部分有放回的样本进行训练而构建。
-
模型训练:通过训练集数据对随机森林模型进行训练,即对每个决策树进行单独的训练。
-
模型预测:使用训练好的随机森林模型对测试集数据进行分类预测。
-
模型评估:对预测结果进行评估,可以使用准确率、精确率、召回率等指标衡量模型的性能。
-
参数调优:根据模型评估结果,对随机森林模型的参数进行调优,以提高模型的性能。
-
模型应用:使用经过调优的随机森林模型对新的土地分类数据进行预测。
需要注意的是,随机森林方法在处理高维数据和大数据集时具有较好的性能,但对于类别不平衡的情况可能存在一定的问题。在实际应用中,可以根据具体需求选择合适的模型和算法进行土地分类。
函数
gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed)
创建一个空的随机森林分类器
方法参数
- numberOfTrees( number )
创建的决策树数量
- variablesPerSplit( number,optional )
可选参数,每个变量拆分的数量
- minLeafPopulation( number,optional )
可选参数,创建至少包含这些点的节点
- bagFraction( number,optional )
可选参数,每棵树的输入袋比例
- maxNodes( number,optional )
可选参数,每棵树中最大的叶子节点数量
- seed( number,optional )
可选参数,随机种子
返回值: Classifier
代码
/*** @File : * @Time : 2023/08/28* @Author : GEOVIS Earth Brain* @Version : 0.1.0* @Contact : 中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License : (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc : 对影像使用随机森林算法进行分类*/
/** */// 地物分类标签影像
var imgLable = gve.Image("AIRCAS/GLC_FCS30_2020/GLC_FCS30_2020_E115N35");
Map.centerObject(imgLable)
var id = Map.addLayer(imgLable, null, "imgLable");var label = 'LABLE';
var imgLableRemapped = imgLable.rename(label)// Sentinel2 待分类影像
var img = gve.Image("S2/L2A/20221107T024919_20221107T050438_T50SNA").select('B.*');
// print("Sentinel2 img",img);// 获取区域
var ROI = gve.Geometry.Polygon([[[117.15900037027156, 31.807122313784646],[117.15900037027156, 31.633066875770748],[117.65750500894343, 31.633066875770748],[117.65750500894343, 31.807122313784646]]]
);// 波段采样的数量
var numPoints = 100;
// 分类波段id
var classBand = label;
// 采样区域
var region = ROI;
// 缩放
var scale = 100;
var sample = img.addBands(imgLableRemapped).stratifiedSample(numPoints, classBand, region, scale);
// print('sample',sample)// 样本数据增加随机值属性,用于划分训练数据和验证数据
var sample = sample.randomColumn();// 80%样本用于训练,20%样本用于验证
var trainingSample = sample.filter('random<=0.8');
var validationSample = sample.filter('random>0.8');// 采用欧几里得距离模式训练最小距离分类器
var features = trainingSample;
var classProperty = label;
var inputProperties = img.bandNames();
//gve.Classifier.Cart(maxNodes,minLeafPopulation,maxDepth)
var trainedClassifier = gve.Classifier.smileRandomForest(50).train(features, classProperty, inputProperties);
//gve.Classifier.Cart()
//gve.Classifier.minimumDistance('euclidean', 10)
// print('trainedClassifier',trainedClassifier)
// 打印已训练完的分类器信息
print('Explain of trained classifier', trainedClassifier.explain());
// 获取训练数据的混淆矩阵和整体准确率
var trainedMatrix = trainedClassifier.confusionMatrix();
// print('Training confusion matrix', trainedMatrix);
print('Training overall accuracy', trainedMatrix.accuracy());// 获取验证数据的混淆矩阵和整体准确率
validationSample = validationSample.classify(trainedClassifier);
// print('validationSample',validationSample)// errorMatrix是一个混淆矩阵
var validationMatrix = validationSample.errorMatrix(label, 'classification');
// print('Validation confusion matrix', validationMatrix);
print('Validation accuracy', validationMatrix.accuracy());// 使用分类器对分类
var imgClassified = img.classify(trainedClassifier);
// print("imgClassified",imgClassified)var classVis = {band_rendering: {uniquevalue: {colortable: {values: [10, 11, 20, 51, 52, 61, 62, 71, 72, 130, 180, 190, 210],colors: ['#FFFF64', '#FFFF64', '#AAF0F0', '#4C7300', '#006400', '#00A000','#AAC800', '#003C00', '#005000', '#FFB432', '#00DC82', '#C31400', '#0046C8'],na: "#000000"}}}
};Map.centerObject(img)
var id1 = Map.addLayer(img, { bands: ['B4', 'B3', 'B2'], min: 100, max: 3500 }, 'img');Map.centerObject(imgClassified)
var id2 = Map.addLayer(imgClassified, { palette: classVis }, 'Classified');
结果
- Explain of trained classifier"
-
2024-10-11 11:00:57.769
▶ Object (15 properties) -
2024-10-11 11:00:57.770
"Training overall accuracy" -
2024-10-11 11:00:57.770
0.9896680216802168 -
2024-10-11 11:00:57.770
"Validation accuracy" -
2024-10-11 11:00:57.771
0.01386001386001386 -
2024-10-11 11:02:52.600
"Error: {"message":"参数异常","code":40205}"
相关文章:
中科星图(GVE)——使用随机森林方法进行土地分类
目录 简介 函数 gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed) 代码 结果 简介 使用随机森林方法进行土地分类的步骤如下: 数据准备:收集所需的土地分类数据,并对数…...

【蓝队技能】【C2流量分析】MSFCSSliver
蓝队技能 MSF&CS&Sliver 蓝队技能总结前言一、MSF1.1 流量分析1.2 特征提取 二、CS1.1 流量分析1.2 特征提取 二、Sliver1. 特征分析 总结 前言 不同C2工具的流量特征都有细微差别,学会分析方法后就可以进行分析 一、MSF 1.1 流量分析 MSF流量特征过于明显…...

不推荐使用Scilab作为MATLAB的开源替代
安装了Scilab2024.1.0,随便试了几分钟就发现有严重影响使用的Bug(也可能是就是这样设计的,有一个所谓的“暂停模式”),复现步骤:主界面上点击“Scilab示例”按钮,打开“演示”窗口,点击左侧列表中的“多项式…...
C++智能指针及其应用
C11之后出现了 shared_ptr 和 unique_ptr,这两个类都是基于RAII技术进行设计的 RAII 利用对象生命周期来控制程序资源(如内存,文件句柄,网络连接,互斥量等资源)的技术,具体地说,就是…...

06 算法基础:算法的定义、表现形式(自然语言、伪代码、流程图)、五个特性(有穷性、确定性、可行性、输入、输出)、好算法的设计目标
目录 1 算法的定义 2 算法的三种表现形式 2.1 自然语言 2.2 伪代码 2.3 流程图 3 算法的五个特性 3.1 有穷性 3.2 确定性 3.3 可行性 3.4 输入 3.5 输出 4 好算法的设计目标 4.1 正确性 4.2 可读性 4.3 健壮性 4.4 通用性 4.5 高效率与低存储量 1 算法的定义 …...

【红外传感器】STM32C8T6标准库使用红外对管
好好学习,天天向上 前言一、了解红外二、标准库的代码1.infrared.c2.infrared.h3.main.c4 现象 总结 前言 红外线:频率介于微波与可见光之间的电磁波。 参考如下 【STM32】标准库与HAL库对照学习教程外设篇–红外避障传感器 光电红外传感器详解&#…...

STM32L010F4 最小系统设计
画一个 STM32L010F4 的测试板子...... by 矜辰所致前言 最近需要用到一个新的 MCU: STM32L010F4 ,上次测试的 VL53L0X 需要移植到这个芯片上,网上一搜 STM32L010F4,都是介绍资料,没有最小系统,使用说明等。…...
AI 工具大赏:探索智能时代的得力助手
在当今这个科技飞速发展的时代,人工智能(AI)技术已经深入到我们生活的方方面面。从日常办公到创意设计,从学术研究到娱乐休闲,AI 工具正以其强大的功能和便捷的使用体验,成为人们不可或缺的得力助手。那么&…...

安通物流借助CRM重塑企业客户关系管理新格局
安通控股股份有限公司(以下简称"安通控股")是一家扎根集装箱多式联运物流产业的现代综合物流服务企业,致力于为客户提供绿色、经济、高效、安全的集装箱全程物流解决方案。 据Alphaliner排名统计,截至2023年10月,安通控股综合运力全球排名21位,位居国内内贸集装箱物…...

C++标准模板库--vector
vector 介绍 vector(向量)是一种序列容器,表示为可以改变大小的数组。vector中的元素使用连续的存储位置,这意味着也可以使用指向其元素的常规指针偏移量来访问任意元素,且与数组一样高效。但与数组不同的是ÿ…...

通信学习干货:运营商为什么要大力推广FTTR?
随着数字化时代的来临,互联网的需求不断增长,家庭网络也在不断演进。光纤到家(FTTH)已经成为提供高速互联网连接的标配,但随着技术的发展,我们迎来了FTTR(光纤到房间)技术࿰…...

【Spring篇】初识之Spring的入门程序及控制反转与依赖注入
🧸安清h:个人主页 🎥个人专栏:【计算机网络】,【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 文章目录 🎯初始Spring …...
OpenLayers:构建高质量的Web地图应用
OpenLayers:构建高质量的Web地图应用 文章目录 OpenLayers:构建高质量的Web地图应用简介为什么选择 OpenLayers?跨平台兼容性高性能渲染高度可定制化社区支持 安装与设置功能扩展矢量图层地理编码投影转换 交互与事件其他高级特性控制动画数据…...
Java比较两个Excel是否内容一致
领导每天让比较两个Excel中的内容,为了节省工作效率多摸鱼,就写了个java接口,通过上传两个文件 进行代码比较得到详细的比较结果(这个需要自己根据日志二开) 目前只实现了比较功能 话不多说直接上代码,具体看注释 package com.yx…...
UniApp入门教程
UniApp X 是一种用于构建跨平台应用程序的框架,它基于 Vue.js 并通过 UniApp 技术栈支持多种平台,如微信小程序、支付宝小程序、H5、Android 和 iOS。以下是 UniApp X 的一些关键特点和基础知识: UniApp X 的特点 跨平台支持: 可…...

Vue.js中使用Element UI实现动态表单项管理及验证
在Vue.js项目中,表单是与用户交互的重要部分,特别是在需要动态管理表单项的场景下,如何优雅地实现添加、删除、上移、下移及验证功能变得尤为重要。本文将详细介绍如何使用Element UI来实现一个包含动态表单项管理以及验证功能的表单。 效果…...

一插U盘就提示格式化?原因、恢复与预防全攻略
一、现象直击:U盘插入电脑即提示格式化 在日常的工作与生活中,U盘作为重要的数据存储和传输工具,被广泛应用于各类场景。然而,有时当我们满怀期待地将U盘插入电脑时,却会遭遇一个令人头疼的问题——系统弹出提示框&am…...

云电脑使用教程标准版
云电脑,也称为云桌面,是一种通过互联网连接远程服务器,使用虚拟桌面环境来执行计算任务的技术。川翔云电脑通过创建软件镜像,让用户能够快速启动并使用预配置的软件和资料,提供高效且经济的云服务。相较于公有云服务&a…...

浏览器服务端文件下载控制(安全阻止、文件浏览器打开还是下载行为控制)
文章目录 简介Chrome已阻止不安全内容下载PDF直接打开txt、xml、js文件被自动打开了而不是下载阿里OSS设置response header阿里OSS修改metadata 简介 随着浏览器的发展,有很多安全方面的限制,对我们的文件下载行为产生了很大的影响。 在JavaScript下载…...
机器学习——量子机器学习
量子机器学习: 未来的机器学习方法 量子计算和机器学习的结合为计算科学带来了前所未有的前景。量子机器学习(QML)正在迅速发展,目标是利用量子计算的优势来处理传统计算机无法高效解决的问题。本文将深入探讨量子机器学习的基本概念、量子计算的关键技术、具体的量…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
背包问题双雄:01 背包与完全背包详解(Java 实现)
一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...
十二、【ESP32全栈开发指南: IDF开发环境下cJSON使用】
一、JSON简介 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,具有以下核心特性: 完全独立于编程语言的文本格式易于人阅读和编写易于机器解析和生成基于ECMAScript标准子集 1.1 JSON语法规则 {"name"…...

dvwa11——XSS(Reflected)
LOW 分析源码:无过滤 和上一关一样,这一关在输入框内输入,成功回显 <script>alert(relee);</script> MEDIUM 分析源码,是把<script>替换成了空格,但没有禁用大写 改大写即可,注意函数…...
从0开始一篇文章学习Nginx
Nginx服务 HTTP介绍 ## HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送协议。 ## HTTP工作在 TCP/IP协议体系中的TCP协议上&#…...