java对接GPT 快速入门

统一对接GPT服务的Java说明
当前,OpenAI等GPT服务厂商主要提供HTTP接口,这使得大部分Java开发者在接入GPT时缺乏标准化的方法。
为解决这一问题,Spring团队推出了Spring AI ,它提供了统一且标准化的接口来对接不同的AI服务提供商,包括阿里云通义大模型。
通过使用Spring AI,开发者可以轻松地以一致的方式调用各种GPT功能,并且能够利用Spring框架的强大生态优势,如自动装配、依赖注入等特性,极大地简化了开发流程并提高了代码复用性。
Spring AI Alibaba介绍:集成与优化
Spring AI Alibaba是基于Spring AI构建的AI应用开发工具,它通过将阿里云百炼系列大模型接入到Spring生态系统中,使得开发者能够利用熟悉的Spring Boot编程模型轻松集成AI功能。
其核心优势在于提供了一套标准化接口,支持多种AI服务提供商(如OpenAI、Azure、阿里云等),允许开发者通过简单修改配置即可切换不同的AI实现,极大减少了迁移成本和工作量。
此外,Spring AI Alibaba还兼容Flux流输出,为构建基于流的机器人模型提供了便利。通过Spring Boot的强大生态支持,Spring AI Alibaba进一步简化了AI能力在企业级应用中的落地过程。
后端构建:SpringBoot集成Spring AI Alibaba实战:构建对话模型与流接口
基于SpringBoot集成Spring AI Alibaba来构建一个简单的对话模型,并创建一个支持Prompt能力与流返回接口的项目,需要按照以下步骤进行。根据提供的我了解的信息,我们将逐步分析问题的原因,并给出具体的实施步骤。
例子使用通义后端API。
1. 环境准备
首先,确保你的开发环境满足如下要求:
- JDK版本在JDK 17或以上。
- Spring Boot版本为3.3.x或更高。
2. 获取API Key
前往阿里云百炼页面并登录您的阿里云账号,选择开通“百炼大模型推理”服务。待服务开通后,生成一个新的API KEY,并记录下来以备后续配置使用。
3. 配置API Key
将获取到的API Key设置为环境变量,或者直接在application.properties中配置:
spring.ai.dashscope.api-key=your_api_key_here
4. 添加依赖与仓库
由于Spring AI Alibaba目前处于Milestone阶段,你需要添加特定的Maven仓库来获取相关库。请确保你的pom.xml文件包含以下内容:
<repositories><repository><id>sonatype-snapshots</id><url>https://oss.sonatype.org/content/repositories/snapshots</url><snapshots><enabled>true</enabled></snapshots></repository><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository><repository><id>spring-snapshots</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories><dependencies><dependency><groupId>com.alibaba.cloud.ai</groupId><artifactId>spring-ai-alibaba-starter</artifactId><version>1.0.0-M2</version></dependency><!-- 其他必要的依赖 -->
</dependencies>
同时,请不要忘记设置Spring Boot的父级项目版本(例如3.3.4)。
5. 创建Controller处理请求
接下来,在项目中创建一个Controller来处理GET请求,该请求将利用ChatClient和Prompt功能实现聊天逻辑,并支持跨域请求(CORS)。以下是示例代码:
@RestController
@RequestMapping("/ai")
@CrossOrigin(origins = "*") // 支持所有来源的跨域请求
public class SteamChatController {private final ChatClient chatClient;public SteamChatController(ChatClient.Builder builder) {this.chatClient = builder.build();}@GetMapping(value = "/steamChat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> steamChat(@RequestParam String input) {return chatClient.prompt().user(input).stream().content();}
}
这段代码定义了一个名为SteamChatController的控制器,它接受HTTP GET请求,并通过chatClient调用通义千问API完成对话任务。注意这里我们设置了响应的内容类型为MediaType.TEXT_EVENT_STREAM_VALUE,这是为了适应Flux类型的流输出需求。
6. 启动应用
现在,你已经完成了所有必需的配置和编码工作,只需运行Spring Boot应用程序即可。访问http://localhost:8080/ai/steamChat?input=your_input,其中your_input是你想要发送给AI助手的信息,然后你会看到实时的回复流。
解释
上述步骤涵盖了从环境搭建、API Key配置到实际编写控制逻辑的全过程。特别地,我们使用了Spring AI Alibaba提供的ChatClient对象来发起对阿里云通义千问API的调用,并且实现了基于SSE(Server-Sent Events)协议的流式响应。这使得我们的服务能够实时地向客户端推送数据,非常适合于构建互动性高的在线聊天应用。此外,通过启用CORS支持,允许来自任何源的前端应用都能轻松地与本服务交互。
前端构建:基于React的流式聊天应用,从搭建到运行
构建项目并填写代码
为了构建一个基于React的前端项目,它能够支持流式数据输出(即接收flux<String>格式的数据),并且后端接口地址为http://localhost:8080/ai/steamChat?input=...,你需要遵循以下步骤:
首先,请确保已经安装了Node.js环境。接下来,通过执行下面命令来创建一个新的React应用,并进入该目录安装必要的依赖项:
npx create-react-app frontend
cd frontend
npm install
接着,按照给出的结构组织你的项目文件和添加相应的代码。
public/index.html
这是你项目的主HTML文件,保持简洁即可:
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Stream Chat App</title></head><body><div id="root"></div></body></html>
src/index.js
这个文件用于渲染React应用到DOM中:
import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';ReactDOM.render(<React.StrictMode><App /></React.StrictMode>,document.getElementById('root')
);
src/App.js
定义应用的主要组件入口点:
import React from 'react';
import ChatComponent from './components/ChatComponent';function App() {return (<div className="App"><ChatComponent /></div>);
}export default App;
src/components/ChatComponent.js
这里实现聊天界面的核心逻辑,包括发送消息给后端以及处理流式的响应数据:
import React, { useState } from 'react';function ChatComponent() {const [input, setInput] = useState('');const [messages, setMessages] = useState('');const handleInputChange = (event) => {setInput(event.target.value);};const handleSendMessage = async () => {try {const response = await fetch(`http://localhost:8080/ai/steamChat?input=${input}`);if (!response.ok) throw new Error("Network response was not ok");const reader = response.body.getReader();const decoder = new TextDecoder('utf-8');let done = false;while (!done) {const { value, done: readerDone } = await reader.read();done = readerDone;const chunk = decoder.decode(value, { stream: true });setMessages((prevMessages) => prevMessages + chunk); // 将新收到的数据追加到已有消息上}} catch (error) {console.error('Failed to fetch', error);}};const handleClearMessages = () => {setMessages('');};return (<div><inputtype="text"value={input}onChange={handleInputChange}placeholder="Enter your message"/><button onClick={handleSendMessage}>Send</button><button onClick={handleClearMessages}>Clear</button><div><h3>Messages:</h3><pre>{messages}</pre></div></div>);
}export default ChatComponent;
运行项目
完成以上设置之后,你可以通过运行如下命令启动前端服务:
cd frontend
npm start
这将自动打开浏览器窗口并加载你的应用页面,在这里用户可以输入信息并通过点击“Send”按钮向指定URL发起请求,从而与后端进行交互。注意,上述示例假定后端服务已经在http://localhost:8080/ai/steamChat?input=...处正确配置且可访问,同时支持CORS跨域资源共享以允许来自前端的请求。如果遇到任何网络错误或权限问题,请检查后端设置及安全性配置。
相关文章:
java对接GPT 快速入门
统一对接GPT服务的Java说明 当前,OpenAI等GPT服务厂商主要提供HTTP接口,这使得大部分Java开发者在接入GPT时缺乏标准化的方法。 为解决这一问题,Spring团队推出了Spring AI ,它提供了统一且标准化的接口来对接不同的AI服务提供商…...
微信小程序引入组件教程
1、安装 node.js 下载网址:https://nodejs.org 2.通过 npm 安装 npm init -y npm i vant/weapp -S --production 3、修改 app.json 将 app.json 中的 “style”: “v2” 去除 4、修改 project.config.json 关于修改 project.config.json 的详细内容&#x…...
STM32—SPI通信外设
1.SPI外设简介 STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担可配置8位/16位数据帧、高位先行/低位先行时钟频率:fpclk/(2,4,8,16,32,64,128,256)支持多主机模型、主或从操作可精简为半双工/单…...
Ubuntu:用户不在sudoers文件中
1、问题 执行sudo xxx命令时,显示: user 不在sudoers文件中 需要查看系统版本进入恢复模式修复。 2、重启进入恢复模式 查看系统命令:uname -r 可能显示为:6.8.0-45-generic 重启Ubuntu系统,在开机时按ESC进入模…...
五、Spring Boot集成Spring Security之认证流程2
一、Spring Boot集成Spring Security专栏 一、Spring Boot集成Spring Security之自动装配 二、Spring Boot集成Spring Security之实现原理 三、Spring Boot集成Spring Security之过滤器链详解 四、Spring Boot集成Spring Security之认证流程 五、Spring Boot集成Spring Se…...
接口测试(全)
🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 1、什么是接口测试 顾名思义,接口测试是对系统或组件之间的接口进行测试,主要是校验数据的交换,传递和控制管理过程࿰…...
【学习】word保存图片
word中有想保存的照片 直接右键另存为的话,文件总是不清晰,截屏的话,好像也欠妥。 怎么办? 可以另存为 网页 .html 可以得到: 原图就放到了文件夹里面...
【实战篇】用SkyWalking排查线上[xxl-job xxl-rpc remoting error]问题
一、组件简介和问题描述 SkyWalking 简介 Apache SkyWalking 是一个开源的 APM(应用性能管理)工具,专注于微服务、云原生和容器化环境。它提供了分布式追踪、性能监控和依赖分析等功能,帮助开发者快速定位和解决性能瓶颈和故障。…...
三勾软件/ java+springboot+vue3玖玖云电商ERP多平台源码
玖玖云ERP系统、支持多平台订单同步,仓库发货,波次拣货,售后服务,电商ERP一站式解决方案 项目介绍 玖玖云ERP系统基于javaspringbootelement-plusuniapp打造的面向开发的电商管理ERP系统,方便二次开发或直接使用。主…...
020 elasticsearch7.10.2 elasticsearch-head kibana安装
文章目录 全文检索流程ElasticSearch介绍ElasticSearch应用场景elasticsearch安装允许远程访问设置vm.max_map_count 的值 elasticsearch-head允许跨域 kibana 商品数量超千万,数据库无法使用索引 如何使用全文检索: 使用lucene,在java中唯一…...
基于SpringBoot+Vue的蜗牛兼职网的设计与实现(带文档)
基于SpringBootVue的蜗牛兼职网的设计与实现(带文档) 开发语言:Java数据库:MySQL技术:SpringBootMyBatisVue等工具:IDEA/Ecilpse、Navicat、Maven 该系统主要分为三个角色:管理员、用户和企业,每个角色都有其独特的功能模块,以满…...
Linux 命令 chown 和 chmod 的区别
Linux 命令 chown 和 chmod 的区别 chown的作用:更改文件或目录的所有者和所属用户组chmod的作用:更改文件或目录的访问权限 chown的作用:更改文件或目录的所有者和所属用户组 $ chown [options] user:group file_pathuser:新文件…...
盘点慢查询原因及优化方法
目录 一,前言二,准备 type重点看 三,慢查询原因和解决 1,sql未加索引2,索引失效3,limit深分页问题 (1)limit深分页为什么会慢(2)深分页优化 4,in…...
【热门】智慧果园管理系统解决方案
随着科技的进步,原有农业种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。经过多年的实践,人们总结出一种新的种植方法——温室农业,即“用人工设施控制环境因素,使作物获得最适宜的生长条件,从而延长生产季节,获得最佳的产出”。这种农业生产方式…...
torch.nn.Sequential介绍
torch.nn.Sequential 是 PyTorch 中一个模块容器,用于将一系列层或模块按顺序连接在一起,简化前向传播过程。在 Sequential 中,所有的子模块会按照添加的顺序被执行,适合那些有明确顺序的神经网络结构,比如卷积神经网络、全连接网络等。 主要特点 按顺序执行: 将多个子模…...
使用verilog设计实现的数字滤波器(低通、高通、带通)及其仿真
以下是一个简单的使用Verilog设计数字滤波器(以有限脉冲响应(FIR)滤波器为例,实现低通、高通、带通滤波器)的基本步骤和代码框架: 一、FIR滤波器原理 FIR滤波器的输出 y [ n ] y[n] y[n] 是输入信号...
KPaaS集成平台中怎么创建数据可视化大屏
KPaaS集成平台的数据可视化大屏是什么? 在KPaaS业务集成扩展平台中,数据大屏是一种数据可视化展示工具,它可以帮助企业将复杂的数据以直观、易理解的方式呈现出来,从而提高数据的可读性和价值。数据大屏的主要特点包括࿱…...
深度学习:网络压缩(Network Compression)详解
网络压缩(Network Compression)详解 网络压缩是一种旨在减小深度学习模型大小,提高其运行效率和降低计算资源消耗的技术。在移动设备和嵌入式系统等资源受限的环境中,网络压缩尤为重要。它允许这些设备利用现有的深度学习技术&am…...
Go pprof性能分析
pprof是Go语言内置的性能分析工具,它可以帮助我们分析程序的CPU使用情况、内存分配等。 pprof 包含两部分: Go语言内置的两个包 net/http/pprof 对 runtime/pprof 的二次封装,一般是服务型应用。比如 web server ,它一直运行。这…...
扬帆出海!九章云极DataCanvas公司惊艳亮相迪拜GITEX Global 2024
近日, 第44届GITEX GLOBAL展会(GITEX GLOBAL 2024)及全球领先的创业与投资盛会Expand North Star 2024在迪拜盛大启幕。九章云极DataCanvas公司惊艳亮相盛会,向全球观众展示智算领域最新研发进展与创新成果,在国际舞台…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...
