当前位置: 首页 > news >正文

深度学习:网络压缩(Network Compression)详解

网络压缩(Network Compression)详解

网络压缩是一种旨在减小深度学习模型大小,提高其运行效率和降低计算资源消耗的技术。在移动设备和嵌入式系统等资源受限的环境中,网络压缩尤为重要。它允许这些设备利用现有的深度学习技术,而不会因模型过大而遭遇执行延迟或过高的能耗。

网络压缩的主要方法

网络压缩技术可以通过多种方式实现,主要包括:

  1. 权重剪枝(Weight Pruning)

    • 概念:通过移除模型中不重要的权重(将其设为零)来减少模型的复杂性。权重的重要性可以通过各种标准(如权重的绝对值大小)来评估。
    • 优点:可以显著减少模型的参数数量,降低存储需求。
    • 缺点:剪枝后可能需要重新训练(fine-tuning)来恢复性能。
  2. 量化(Quantization)

    • 概念:减少模型中权重和激活值的表示精度,例如从32位浮点数减少到8位整数。
    • 优点:显著减小模型大小,减少计算资源消耗,有时还能加速模型推理过程。
    • 缺点:可能会引入量化误差,影响模型的精度和性能。
  3. 知识蒸馏(Knowledge Distillation)

    • 概念:通过训练一个小型的“学生”模型来模仿一个大型的“教师”模型的行为。学生模型学习模仿教师模型的输出或中间特征层。
    • 优点:学生模型通常比教师模型小,更适合部署在资源受限的设备上。
    • 缺点:设计和训练一个有效的学生模型可能较为复杂,需要精心设计的蒸馏策略。
  4. 使用更高效的网络架构

    • 概念:设计或选择本质上计算高效的网络架构,如MobileNet、ShuffleNet等,这些架构使用如深度可分离卷积等特殊的技术来减少计算量和参数数量。
    • 优点:不牺牲太多性能的前提下减少计算量和参数数。
    • 缺点:可能需要特定的硬件支持以充分利用这些架构的优势。
应用领域
  • 移动和边缘设备:在手机、无人机、穿戴设备等边缘计算设备上部署AI功能。
  • 实时应用:例如,自动驾驶汽车、实时视频分析等,这些应用需要快速响应时间。
  • 互联网物品(IoT):使IoT设备能够执行基本的AI任务,如语音识别和简单的图像处理。
挑战
  • 性能损失:压缩过程可能导致模型性能降低,特别是在极端压缩的情况下。
  • 平衡权衡:在模型大小、计算效率和性能之间找到最佳平衡点是设计压缩模型时的关键挑战。
  • 自动化:自动化网络压缩仍然是一个活跃的研究领域,需要更智能的工具和方法来简化压缩过程。

总结

网络压缩技术为在资源受限环境中部署复杂的深度学习模型提供了可能。通过实现模型大小的显著减小和计算效率的提升,这些技术使得深度学习应用能够更广泛地应用于各种设备和场景中。随着研究的深入和技术的进步,网络压缩将继续发展,以满足更多实际应用的需求。

相关文章:

深度学习:网络压缩(Network Compression)详解

网络压缩(Network Compression)详解 网络压缩是一种旨在减小深度学习模型大小,提高其运行效率和降低计算资源消耗的技术。在移动设备和嵌入式系统等资源受限的环境中,网络压缩尤为重要。它允许这些设备利用现有的深度学习技术&am…...

Go pprof性能分析

pprof是Go语言内置的性能分析工具,它可以帮助我们分析程序的CPU使用情况、内存分配等。 pprof 包含两部分: Go语言内置的两个包 net/http/pprof 对 runtime/pprof 的二次封装,一般是服务型应用。比如 web server ,它一直运行。这…...

扬帆出海!九章云极DataCanvas公司惊艳亮相迪拜GITEX Global 2024

近日, 第44届GITEX GLOBAL展会(GITEX GLOBAL 2024)及全球领先的创业与投资盛会Expand North Star 2024在迪拜盛大启幕。九章云极DataCanvas公司惊艳亮相盛会,向全球观众展示智算领域最新研发进展与创新成果,在国际舞台…...

Qt | 元对象+元枚举+Qt自带图标案例

点击上方"蓝字"关注我们 01、QMetaObject >>> QMetaObject 是 Qt 中用于反射的一个类,提供了有关类的信息,包括属性、信号和槽等。它是 Qt 的元对象系统的核心部分,允许您在运行时获取有关 Qt 对象的详细信息。这种功能在使用 Qt 的信号与槽机制、属性系…...

linux升级cmake

如果出现如下报错,就应该升级cmake了! CMake Error at CMakeLists.txt:1 (cmake_minimum_required): CMake 3.1 or higher is required. You are running version 2.8.12.2 -- Configuring incomplete, errors occurred! 官网 可以下载各个版本的cma…...

ip a查看网卡接口信息

ip a命令是用于查看和管理网络接口信息的命令。通过执行ip a命令,可以查看当前系统上所有网络接口的配置信息,包括IP地址、子网掩码、网关、MAC地址等。该命令还可以用于配置网络接口的参数,如设置IP地址、启用或禁用接口等操作。 # ip a 1:…...

centos celery 日志管理

celery经常会产生大量日志,长时间累计下来会对服务器造成一定的压力 1 配置 logrotate 进行日志拆分 logrotate 是 Linux 系统中常用的日志管理工具。我们将使用它来管理 Celery 的日志文件,确保日志文件不会无限增长,并定期拆分、归档和删…...

深度学习(DL)实战——基本概念介绍

公众号:自学编程村,关注后,回复“书籍”,领取1000多本计算机书籍。涵盖语言语法、数据结构算法、AI相关书籍、开发相关等等各种书籍,应有尽有,你总会用到。 关注方式见主页或文章底部。想要加群可从公众号中…...

较新(24.3)加速Diffusion模型推理的方法,附带参考文献

1.采用fast ODE solvers: Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusionbased generative models. In: Conference on Neural Information Processing Systems (NeurIPS) (2022) Lu, C., Zhou, Y., Bao, F., Chen, J…...

硬件产品经理的开店冒险之旅(上篇)

这是一篇流水账式的个人履历小结,算是迎接接下来的人生第二职业曲线。未来将不定期更新在第二职业方面的探索过程记录,既当作自己的冒险之旅记录,也期望有机会让自己的经历能在互联网上留下一些印记。 一些职业生涯小记:目前的状…...

「C++」类和对象最终回

目录 前言 初始化列表: 使用及特点: 总结: 案例分析: 类型转换 单参数构造函数: 多参数构造函数: static成员 友元 内部类 匿名对象 特点 使用方法: 匿名对象使用实例补充&#…...

ELK:Elasticsearch、Logstash、Kibana Spring Cloud Sleuth和Spring Cloud Zipkin

〇、虚拟机中docker安装elasticsearch 、Kibana、Logstash elasticsearch导入中文分词器 Logstash修改es数据库ip及创建索引名配置 一、elasticsearch数据库的结构 和mysql作比较,mysql中的数据库的二维表相当于es数据库的index索引结构;mysql数据库的二…...

动态规划17:123. 买卖股票的最佳时机 III

动态规划解题步骤: 1.确定状态表示:dp[i]是什么 2.确定状态转移方程:dp[i]等于什么 3.初始化:确保状态转移方程不越界 4.确定填表顺序:根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接:123.…...

华为OD机试真题---预定酒店

华为OD机试真题中的“预定酒店”题目是一道典型的算法题,主要考察的是如何在给定的酒店价格数组中找到最接近心理价位的k个酒店,并按价格从低到高输出。以下是对该题目的详细解析: 一、题目描述 放暑假了,小明决定到某旅游景点游…...

力扣242.有效的字母异位词

题目链接:242. 有效的字母异位词 - 力扣(LeetCode) 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的 字母异位词。 示例 1: 输入: s "anagram", t "nagaram"输出: true 示例 2: 输入: s &q…...

Android IP路由策略和防火墙

Android IP路由策略和防火墙 Platform: RK3368 OS: Android 6.0 Kernel: 3.10.0 文章目录 Android IP路由策略和防火墙ip route, ip rule, iptables简介ip routeip ruleiptables Android路由策略Android路由策略优先级命令查看当前路由策略 Android路由表命令查看路由表命令…...

MySQL insert ... select 语句锁表导致数据写不进去

问题现象 调用后台接口向表 t1 insert 写入数据时一直等待直到超时,猜测表 t1 被其它事务加锁了没有释放。 问题分析 在发生死锁时,通过执行下面命令查看事务和锁信息: select * from information_schema.INNODB_TRX 用来查看正在运行的事…...

Android摄像头Camera2和Camera1的一些总结

Android 系统对摄像头的同时使用有限制,不能同时使用摄像头进行预览或者录制音视频。 例如:界面上有两个SurfaceView, 这两个SurfaceView不能同时预览或者录制音视频,只能有一个正常工作(一个SurfaceView预览前置摄像头&#xff…...

【Linux 从基础到进阶】Linux中的用户认证与授权

Linux中的用户认证与授权 1. 引言 在Linux系统中,**用户认证(authentication)和授权(authorization)**是两个核心的安全机制,用来控制系统资源的访问和管理用户操作权限。用户认证确保登录的用户是合法的…...

用户界面设计:视觉美学与交互逻辑的融合

1、什么是用户界面 用户界面(UI)是人与机器之间沟通的桥梁,同时也是用户体验(UX)的重要组成部分。用户界面设计包括两个核心要素:视觉设计(即产品的外观和感觉)和交互设计&#xff…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...