ELK:Elasticsearch、Logstash、Kibana Spring Cloud Sleuth和Spring Cloud Zipkin
〇、虚拟机中docker安装elasticsearch 、Kibana、Logstash
elasticsearch导入中文分词器
Logstash修改es数据库ip及创建索引名配置
一、elasticsearch数据库的结构
和mysql作比较,mysql中的数据库的二维表相当于es数据库的index索引结构;mysql数据库的二维表中每一条数据相当于es数据库中的document文档数据。
每个索引有主分片和副分片,主分片和副分片数据保持一致,类似主从关系。
index索引有不同于二维表的mappings数据结构:
document文档数据存放在hits中的hits中
二、使用Kibana图形化界面命令操作es数据库
1)查看索引、创建索引及mappings结构、创建文档数据
1)查询所有索引
2)查看指定索引goods
3)创建索引并更改mapping结构
4)创建索引文档
5)其他命令
2)对文档数据的crud操作
3)检索操作
三、使用java代码连接操作es数据库
0)导入依赖坐标
<parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.3.12.RELEASE</version></parent><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency></dependencies>
1)创建实体类、并添加注解
@Field:
添加该注解类似于redis的json数据和实体类对象的属性映射时添加的注解,name用来指定映射到es数据库中的字段名称,type用来指定映射到es数据库中的类型,analyzer用来指定分词器,es数据库没有中文分词器,需要自行下载。
@Document:
indexName指定创建index索引时的索引名
2)添加相关配置文件
别忘记编写启动类
3) 在测试类中调用es数据库连接对象elasticsearchRestTemplate
①创建索引
②增
③改
④删
⑤全字段内容检索
⑥全部搜索
⑦匹配搜索
⑧短语搜索
⑨范围搜索
⑩多条件搜索
⑩①搜索高亮
四、使用Logstash收集日志数据到es数据库中
0)依赖坐标
<parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.3.12.RELEASE</version> </parent><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>6.3</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency> </dependencies>
1)编写logback.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<!--该日志将日志级别不同的log信息保存到不同的文件中 -->
<configuration>
<include resource="org/springframework/boot/logging/logback/defaults.xml" />
<springProperty scope="context" name="springAppName"
source="spring.application.name" />
<!-- 日志在工程中的输出位置 -->
<property name="LOG_FILE" value="${BUILD_FOLDER:-build}/${springAppName}" />
<!-- 控制台的日志输出样式 -->
<property name="CONSOLE_LOG_PATTERN"
value="%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" />
<!-- 控制台输出 -->
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>INFO</level>
</filter>
<!-- 日志输出编码 -->
<encoder>
<pattern>${CONSOLE_LOG_PATTERN}</pattern>
<charset>utf8</charset>
</encoder>
</appender>
<!-- logstash远程日志配置-->
<appender name="logstash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
<destination>192.168.8.128:4560</destination>
<encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder" />
</appender>
<!-- 日志输出级别 -->
<root level="DEBUG">
<appender-ref ref="console" />
<appender-ref ref="logstash" />
</root>
</configuration>
2)添加日志注解
3)kibana查看日志索引文档信息
①)命令查看
②)图形化界面
五、Spring Cloud Sleuth
Sleuth是在logback的基础上进行请求追踪和日志记录,会标记请求添加一个id。
0)依赖坐标
<!-- sleuth启动器依赖 --> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-sleuth</artifactId> </dependency> <!-- logstash相关依赖,用于应用中的Sleuth将采集的跟踪数据发送给logstash使用 --> <dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>5.0</version> </dependency>1)修改logback.xml配置文件<encoder>标签
<?xml version="1.0" encoding="UTF-8"?> <!--该日志将日志级别不同的log信息保存到不同的文件中 --> <configuration><include resource="org/springframework/boot/logging/logback/defaults.xml" /><springProperty scope="context" name="springAppName"source="spring.application.name" /><!-- 日志在工程中的输出位置 --><property name="LOG_FILE" value="${BUILD_FOLDER:-build}/${springAppName}" /><!-- 控制台的日志输出样式 --><property name="CONSOLE_LOG_PATTERN"value="%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" /><!-- 控制台输出 --><appender name="console" class="ch.qos.logback.core.ConsoleAppender"><filter class="ch.qos.logback.classic.filter.ThresholdFilter"><level>INFO</level></filter><!-- 日志输出编码 --><encoder><pattern>${CONSOLE_LOG_PATTERN}</pattern><charset>utf8</charset></encoder></appender><!-- logstash远程日志配置--><appender name="logstash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"><destination>192.168.222.128:4560</destination><encoderclass="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder"><providers><timestamp><timeZone>UTC</timeZone></timestamp><pattern><pattern>{"severity": "%level","service": "${springAppName:-}","trace": "%X{X-B3-TraceId:-}","span": "%X{X-B3-SpanId:-}","exportable": "%X{X-Span-Export:-}","pid": "${PID:-}","thread": "%thread","class": "%logger{40}","rest": "%message"}</pattern></pattern></providers></encoder></appender><!-- 日志输出级别 --><root level="DEBUG"><appender-ref ref="console" /><appender-ref ref="logstash" /></root> </configuration>
六、Spring Cloud Zipkin
Zipkin和Sleuth集成,提供请求追踪,响应时间的可视化界面
-1)创建docker容器运行Zipkin服务器
0)依赖坐标
<dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-zipkin</artifactId> </dependency>
1)需要删除logback.xml
2)访问http://192.168.222.128:9411/zipkin:
相关文章:
ELK:Elasticsearch、Logstash、Kibana Spring Cloud Sleuth和Spring Cloud Zipkin
〇、虚拟机中docker安装elasticsearch 、Kibana、Logstash elasticsearch导入中文分词器 Logstash修改es数据库ip及创建索引名配置 一、elasticsearch数据库的结构 和mysql作比较,mysql中的数据库的二维表相当于es数据库的index索引结构;mysql数据库的二…...
动态规划17:123. 买卖股票的最佳时机 III
动态规划解题步骤: 1.确定状态表示:dp[i]是什么 2.确定状态转移方程:dp[i]等于什么 3.初始化:确保状态转移方程不越界 4.确定填表顺序:根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接:123.…...
华为OD机试真题---预定酒店
华为OD机试真题中的“预定酒店”题目是一道典型的算法题,主要考察的是如何在给定的酒店价格数组中找到最接近心理价位的k个酒店,并按价格从低到高输出。以下是对该题目的详细解析: 一、题目描述 放暑假了,小明决定到某旅游景点游…...
力扣242.有效的字母异位词
题目链接:242. 有效的字母异位词 - 力扣(LeetCode) 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的 字母异位词。 示例 1: 输入: s "anagram", t "nagaram"输出: true 示例 2: 输入: s &q…...
Android IP路由策略和防火墙
Android IP路由策略和防火墙 Platform: RK3368 OS: Android 6.0 Kernel: 3.10.0 文章目录 Android IP路由策略和防火墙ip route, ip rule, iptables简介ip routeip ruleiptables Android路由策略Android路由策略优先级命令查看当前路由策略 Android路由表命令查看路由表命令…...
MySQL insert ... select 语句锁表导致数据写不进去
问题现象 调用后台接口向表 t1 insert 写入数据时一直等待直到超时,猜测表 t1 被其它事务加锁了没有释放。 问题分析 在发生死锁时,通过执行下面命令查看事务和锁信息: select * from information_schema.INNODB_TRX 用来查看正在运行的事…...
Android摄像头Camera2和Camera1的一些总结
Android 系统对摄像头的同时使用有限制,不能同时使用摄像头进行预览或者录制音视频。 例如:界面上有两个SurfaceView, 这两个SurfaceView不能同时预览或者录制音视频,只能有一个正常工作(一个SurfaceView预览前置摄像头ÿ…...
【Linux 从基础到进阶】Linux中的用户认证与授权
Linux中的用户认证与授权 1. 引言 在Linux系统中,**用户认证(authentication)和授权(authorization)**是两个核心的安全机制,用来控制系统资源的访问和管理用户操作权限。用户认证确保登录的用户是合法的…...
用户界面设计:视觉美学与交互逻辑的融合
1、什么是用户界面 用户界面(UI)是人与机器之间沟通的桥梁,同时也是用户体验(UX)的重要组成部分。用户界面设计包括两个核心要素:视觉设计(即产品的外观和感觉)和交互设计ÿ…...
ZK集群搭建:详细步骤与注意事项
在大数据和分布式系统日益重要的今天,ZooKeeper(简称ZK)作为一种分布式协调服务,扮演着举足轻重的角色。它主要用于管理大型分布式系统中的配置信息、命名、同步等。下面将详细介绍如何搭建一个ZooKeeper集群,帮助大家…...
如何将csdn文章导出为pdf
前言 在csdn上浏览文章的时候我发现有的文章支持pdf导出,但是有的文章不支持pdf导出,为了解决能将csdn上所有文章都能以pdf格式导出遂作此文。 正文 先上代码: (function(){use strict;var contentBox $("div.article_content")…...
【艾思科蓝】Imagen:重塑图像生成领域的革命性突破
【连续七届已快稳ei检索】第八届电子信息技术与计算机工程国际学术会议(EITCE 2024)_艾思科蓝_学术一站式服务平台 更多学术会议请看 学术会议-学术交流征稿-学术会议在线-艾思科蓝 目录 引言 一、Imagen模型的技术原理 1. 模型概述 2. 工作流程 …...
java类和对象(下): 封装 static成员 内部类
前言: 在前期的知识点中,我们学习了java中this函数的使用和相关的概念。这期我们将介绍封装的概念,以及常见内部类的使用,让我们开车吧!!!! 本期目录: 6. 封装 7. st…...
外包干了3周,技术退步太明显了。。。。。
先说一下自己的情况,大专生,21年通过校招进入武汉某软件公司,干了差不多3个星期的功能测试,那年国庆,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我才在一个外包企业干了3周的功…...
VIVO算法题——数位之积
记录算法究极无敌菜菜菜鸟的垃圾思维 题目: 现给定任意正整数 n,请寻找并输出最小的正整数 m(m>9),使得 m 的各位(个位、十位、百位 … …)之乘积等于n,若不存在则输出 -1。 菜鸟…...
OPC Router快速打通设备层与influxDB数据通讯
随着时代演化,数据量呈几何倍数增加的情况下出现了时序数据库。时序数据库是基于时间进行存储的数据库,每一条数据中都有一个时间戳,这种数据库特别适合存储那些随着时间变化的数据,通过一些工具处理后,能够分析出数据…...
鸿蒙开发 四十四 ArkTs BuilderParam传递UI(二)
子组件多个BuilderParam,必须通过参数的方式传入,如果界面中有多个界面需要传递,可以定义多个尾随闭包,如图: 在自定义组件中调用: 在使用时候调用是作为参数传递给自定义的组件,参数是界面&…...
同期数分析-留存率
目录 同期数分析 加载数据 单月实现 统计每个月的订单量 求2月份的订单量和用户数量 求2月之前的历史订单量 筛选出2023年2月的新增的用户数 计算2023年2月在后面的留存情况 完整的2023年2月份同期群结果 遍历合并和分析 引入月份列表 遍历 调整成留存率的形式 回…...
Java前后端交互:构建现代Web应用
在现代Web应用开发中,前后端分离是一种常见的架构模式。后端通常负责数据处理和业务逻辑,而前端则负责用户界面和用户体验。Java作为后端开发的强大语言,提供了多种方式与前端进行交互。本文将探讨Java后端与前端交互的几种主要方式ÿ…...
vue3中用axios请求怎么添加cookie
在 Vue 3 中使用 axios 发起请求时,可以通过配置 axios 的请求选项来携带 Cookies。具体来说,确保跨域请求时,设置 withCredentials: true,以便发送和接收 Cookies。 1. Axios 配置携带 Cookie 首先确保你在 axios 请求中设置了…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...


































