Java前后端交互:构建现代Web应用
在现代Web应用开发中,前后端分离是一种常见的架构模式。后端通常负责数据处理和业务逻辑,而前端则负责用户界面和用户体验。Java作为后端开发的强大语言,提供了多种方式与前端进行交互。本文将探讨Java后端与前端交互的几种主要方式,以及如何构建高效、可维护的Web应用。
1. RESTful API
REST(Representational State Transfer)是一种软件架构风格,用于设计网络应用。RESTful API是前后端交互中最常用的方式之一。
特点
- 无状态:每个请求包含所有必要的信息,服务器不需要保存会话信息。
- 统一接口:通过HTTP方法(GET, POST, PUT, DELETE等)进行资源的操作。
- 可缓存:通过HTTP头信息控制数据的缓存。
实现
使用Spring Boot可以快速构建RESTful API。以下是一个简单的例子:
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;@SpringBootApplication
public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}
}@RestController
class GreetingController {@GetMapping("/greeting")public Greeting greeting() {return new Greeting("hello", "world");}
}class Greeting {private final String message;private final String name;public Greeting(String message, String name) {this.message = message;this.name = name;}// getters and setters
}
2. GraphQL
GraphQL是一种用于API的查询语言,它允许客户端精确地指定它需要哪些数据,从而减少数据传输。
特点
- 类型系统:定义了强大的类型系统,确保数据的一致性。
- 单次请求:客户端可以通过单个请求获取所有需要的数据,减少网络请求。
- 可扩展:可以轻松扩展新的字段和类型。
实现
使用Spring Boot和GraphQL可以构建强大的API。以下是一个简单的例子:
import com.graphql.spring.boot.GraphQLSpringBootApplication;
import com.graphql.spring.boot.autoconfigure.GraphQLAutoConfiguration;
import graphql.schema.idl.RuntimeWiring;@SpringBootApplication(exclude = {GraphQLAutoConfiguration.class})
public class Application extends GraphQLSpringBootApplication {@Overrideprotected RuntimeWiring.Builder configureRuntimeWiring(RuntimeWiring.Builder builder) {return builder.type("Query", typeWiring -> typeWiring.dataFetcher("greeting", environment -> {return new Greeting("hello", "world");}));}public static void main(String[] args) {SpringApplication.run(Application.class, args);}
}class Greeting {private String message;private String name;public Greeting(String message, String name) {this.message = message;this.name = name;}// getters and setters
}
3. WebSocket
WebSocket是一种在单个TCP连接上进行全双工通信的协议。它允许服务器主动向客户端发送消息,适用于需要实时交互的应用。
特点
- 实时通信:服务器可以实时推送数据到客户端。
- 持久连接:建立连接后,可以持续通信,直到客户端或服务器关闭连接。
实现
使用Spring Boot可以轻松集成WebSocket。以下是一个简单的例子:
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.handler.TextWebSocketHandler;@SpringBootApplication
public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}
}@RestController
class WebSocketController {@GetMapping("/ws")public void handleWebSocket(WebSocketSession session) {new TextWebSocketHandler() {@Overrideprotected void handleTextMessage(WebSocketSession session, TextMessage message) throws Exception {session.sendMessage(new TextMessage("Hello " + message.getPayload()));}}.afterConnectionEstablished(session);}
}
结论
Java提供了多种方式与前端进行交互,包括RESTful API、GraphQL和WebSocket。每种方式都有其适用场景和优势。选择合适的交互方式可以提高应用的性能和用户体验。随着技术的发展,Java后端与前端的交互方式也在不断进化,开发者需要不断学习和适应新的技术趋势。
相关文章:
Java前后端交互:构建现代Web应用
在现代Web应用开发中,前后端分离是一种常见的架构模式。后端通常负责数据处理和业务逻辑,而前端则负责用户界面和用户体验。Java作为后端开发的强大语言,提供了多种方式与前端进行交互。本文将探讨Java后端与前端交互的几种主要方式ÿ…...
vue3中用axios请求怎么添加cookie
在 Vue 3 中使用 axios 发起请求时,可以通过配置 axios 的请求选项来携带 Cookies。具体来说,确保跨域请求时,设置 withCredentials: true,以便发送和接收 Cookies。 1. Axios 配置携带 Cookie 首先确保你在 axios 请求中设置了…...
informer学习笔记
一、informer讲解 infomer 要解决的三大问题: Attention计算的更快Decoder要一次性输出所有预测堆叠encoder也要更快 1. Attention 在长序列中,并非每一个位置的Attention都重要,对于每一个Q来说,只有一小部分的K与其有较强的…...
Elasticsearch介绍和使用
一、Elasticsearch 强大的搜索和分析能力: Elasticsearch 是一个基于 Lucene 的分布式搜索和分析引擎。它能够快速地对大量数据进行全文搜索、结构化搜索和复杂的数据分析操作。对于大型数据集,它可以高效地处理各种查询需求,包括关键词搜索…...
【Flutter】基础入门:代码基本结构
通过这个简单的 Flutter 示例程序,我们可以快速了解 Flutter 的代码结构,理解每个部分的作用。 import package:flutter/material.dart; void main() { runApp(const MyApp()); } class MyApp extends StatelessWidget { const MyApp({super.key}…...
如何进行数据库缩容 | OceanBase应用实践
作者:关炳文,爱可生 DBA 团队成员,负责数据库相关技术支持。 本文详细介绍了OceanBase V3.2版的集群中,面对数据文件缩容的场景的一套缩容方案,作为大家的参考。 缩容场景 某银行运行的一套采用1-1-1架构的OceanBase…...
机器学习和深度学习的差别
定义和基本原理 机器学习: 定义:机器学习是一种让计算机自动从数据中学习规律和模式的方法,无需明确编程。它通过构建数学模型,利用已知数据进行训练,然后对新的数据进行预测或决策。基本原理:机器学习算…...
RAG拉满-上下文embedding与大模型cache
无论怎么选择RAG的切分方案,仍然切分不准确。 最近,anthropics给出了补充上下文的embedding的方案,RAG有了新的进展和突破。 从最基础的向量查询,到上下文embedding,再到rerank的测试准确度都有了明显的改善…...
前端学习---(2)CSS基础
CSS 用来干什么? CSS 是用来指定文档如何展示给用户的一门语言——如网页的样式、布局、等等。 css语法: 选择器{ 属性名: 属性值; 属性名: 属性值; } h1 {color: red;font-size: 5em; }h1: 选择器 color: 属性 冒号之前是属性,冒号之后是值。 font-size…...
Pandas常用计算函数
目录 排序函数 nlargest函数 nsmallest函数 sort_values函数 df.sort_values Series.sort_values 聚合函数 corr函数-相关性 min函数-最小值 max函数-最大值 mean函数-平均值 sum函数-求和 count函数-统计非空数据 std函数-标准偏差 quantile函数-分位数 排序函…...
C++ | Leetcode C++题解之第473题火柴拼正方形
题目: 题解: class Solution { public:bool makesquare(vector<int>& matchsticks) {int totalLen accumulate(matchsticks.begin(), matchsticks.end(), 0);if (totalLen % 4 ! 0) {return false;}int len totalLen / 4, n matchsticks.s…...
深度解析RLS(Recursive Least Squares)算法
目录 一、引言二、RLS算法的基本思想三、RLS算法的数学推导四、RLS算法的特点五、RLS算法的应用场景六、RLS算法的局限性七、总结 一、引言 在自适应滤波领域,LMS(Least Mean Squares)算法因其计算简单、实现方便而广受欢迎。然而࿰…...
Centos 7.9NFS搭建
原创作者:运维工程师 谢晋 Centos 7.9NFS搭建 NFS服务端安装客户机访问共享配置 NFS服务端安装 SSH连接系统登录到服务端安装nfs服务 # yum -y install nfs-utils2. 安装完成后,查看需要共享的目录,这边共享的是/home目录,如…...
Python库numpy之三
Python库numpy之三 # NumPy数组创建函数二维数组创建函数numpy.eye应用例子numpy.diag应用例子numpy.vander应用例子 # NumPy数组创建函数 二维数组创建函数 numpy.eye 词法:numpy.eye(N, MNone, k0, dtype<class ‘float’>, order‘C’, *, deviceNone, …...
postgresql 安装
一、下载 PostgreSQL: File Browser 下载地址 PostgreSQL: File Browser 上传到服务器,并解压 二、安装依赖 yum install -y perl-ExtUtils-Embed readline-devel zlib-devel pam-devel libxml2-devel libxslt-devel openldap-devel 创建postgresql 和目录 useradd …...
基于机器学习的天气数据分析与预测系统
天气预报是日常生活中非常重要的信息来源,能够帮助人们合理安排日程、预防自然灾害。随着数据科学和机器学习的快速发展,传统的天气预报方法逐渐向基于数据驱动的机器学习方法转变。本文将探讨如何构建一个基于机器学习的天气数据分析与预测系统…...
Java项目-基于Springboot的在线外卖系统项目(源码+说明).zip
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…...
ANSYS Workbench纤维混凝土3D
在ANSYS Workbench建立三维纤维混凝土模型可采用CAD随机几何3D插件建模后导入,模型包含球体粗骨料、圆柱体长纤维、水泥砂浆基体等不同组分。 在CAD随机几何3D插件内设置模型参数后运行,即可在AutoCAD内建立三维纤维混凝土模型,插件支持任意…...
【Vue】Vue3.0(十)toRefs()和toRef()的区别及使用示例
上篇文章:Vue】Vue(九)OptionsAPI与CompositionAPI的区别 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年10月15日11点13分 文章目录 toRefs()和toRe…...
中科星图(GVE)——使用随机森林方法进行土地分类
目录 简介 函数 gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed) 代码 结果 简介 使用随机森林方法进行土地分类的步骤如下: 数据准备:收集所需的土地分类数据,并对数…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
