RAG拉满-上下文embedding与大模型cache
无论怎么选择RAG的切分方案,仍然切分不准确。
最近,anthropics给出了补充上下文的embedding的方案,RAG有了新的进展和突破。
从最基础的向量查询,到上下文embedding,再到rerank的测试准确度都有了明显的改善,测试结果数据如下[2]:
| 测试方案 | Pass@5 | Pass@10 | Pass@20 |
|---|---|---|---|
| 基础RAG | 80.92% | 87.15% | 90.06% |
| 加了上下文的embedding | 86.37% | 92.81% | 93.78% |
| BM25测试和上下文embedding | 86.43% | 93.21% | 94.99% |
| 双路召回的基础上,增加了rerank | 91.24% | 94.79% | 96.30% |
( 备注:Pass@k 检查每个查询检索到的前 k 个文档中是否存在“最佳文档”)

(智谱清言[7]绘制的图)
一、RAG存在的问题
比如有西游记这本书中(第一回 惊天地美猴王出世),一个文档的chunk拆分如下:
“师兄们见了,鼓着掌称赞他。”
很难知道更多关于这个chunk的基本信息,它的上下文不够清晰,那很难让LLM总结得到更准确的总结和回答。
二、上下文embedding
假设根据所属的文档,补充完善这个chunk的上下文信息,就变成这样的chunk:
”孙悟空在菩提祖师门下学成七十二般变化和筋斗云后,展示给师兄们看,变出一棵大树,师兄们对此表示赞赏。“
这样,一个chunk的上下文信息就变得更加完整了。
使用这样的chunk信息,可以让LLM得到更准确的回答。
提示语:
<document>{原始文档}
</document>你的任务是改写一下这个chunk:提供一个简短的上下文补充完整chunk在整个文档中的含义,以便改进chunk的搜索检索。 只回答简洁的上下文,不要回答其他内容。以下是文档中我们想要的部分chunk。
<chunk>{当前chunk}
</chunk>
使用deepseek的测试结果如下[3][4]:

三、大模型Cache
通过字数统计来看,如果每一个chunk都需要传入整个文档,则费用是巨大的。
整个文档(西游记 第一回)的字数统计如下:

那为什么要使用DeepSeek?
从能力的各个方面看,deepseek表现的都很好[6]。
除此之外有一个更大的优点–价格便宜。

除了普通的输入输出价格之外,deepseek提出了一个缓存价格的概念:
如果你传入给模型的前缀内容是相同的,则会命中缓存。命中缓存的费用降低了10倍。

只要前缀相同,就会命中缓存[8](以下是官方文档中的事例代码):

上图中我划线的部分都是缓存命中的。
再回到我们补充chunk上下文的案例,提示语如下:
<document>{原始文档}
</document>你的任务是改写一下这个chunk:提供一个简短的上下文补充完整chunk在整个文档中的含义,以便改进chunk的搜索检索。 只回答简洁的上下文,不要回答其他内容。以下是文档中我们想要的部分chunk。
<chunk>{当前chunk}
</chunk>
原始文档部分以及提示语部分都是一致的,只有如下片段是缓存不命中的:
{当前chunk}
</chunk>
这样,我们的费用就大大降低了,通过大模型补充chunk的上下文就成为了可能。
感谢deepseek的创新和实现[9],让模型的使用变得便宜,让我们可以从更多的场景去探索和尝试。
四、写在最后
补充完善chunk上下文这个方案在之前来做是不可能的,因为一个文档要重复让模型进行读取,这个费用太高了。
从豆包的首次降价,到百度的免费模型,到智谱的免费模型,再到各种本地构建的ollama免费模型
随着模型的普及,价格变的便宜,大胆的尝试它与场景的结合就成为了可能。
所以,未来的模型使用,要 更多的考虑场景,而不是价格。
参考文献:
[1] The best RAG’s technique yet? Anthropic’s Contextual Retrieval and Hybrid Search:https://levelup.gitconnected.com/the-best-rag-technique-yet-anthropics-contextual-retrieval-and-hybrid-search-62320d99004e
[2] anthropic-cookbook例子: https://github.com/anthropics/anthropic-cookbook/blob/main/skills/contextual-embeddings/guide.ipynb
[3] deepseek访问页面: https://chat.deepseek.com/
[4]西游记白话文: https://github.com/gugug/pyltp-books/blob/master/mybooks/Book/%E8%A5%BF%E6%B8%B8%E8%AE%B0%E7%99%BD%E8%AF%9D%E6%96%87/1.txt
[5]在线字数统计: https://www.eteste.com/
[6]中文模型测评排行榜:https://github.com/jeinlee1991/chinese-llm-benchmark?tab=readme-ov-file#3%E4%BF%A1%E6%81%AF%E6%8A%BD%E5%8F%96%E8%83%BD%E5%8A%9B%E6%8E%92%E8%A1%8C%E6%A6%9C
[7]智谱清言: https://chatglm.cn/main/alltoolsdetail?lang=zh
[8]deepseek文档-缓存策略: https://api-docs.deepseek.com/zh-cn/guides/kv_cache
[9]deepseek的MLA缓存实现:https://blog.csdn.net/yutianzuijin/article/details/142372022
相关文章:
RAG拉满-上下文embedding与大模型cache
无论怎么选择RAG的切分方案,仍然切分不准确。 最近,anthropics给出了补充上下文的embedding的方案,RAG有了新的进展和突破。 从最基础的向量查询,到上下文embedding,再到rerank的测试准确度都有了明显的改善…...
前端学习---(2)CSS基础
CSS 用来干什么? CSS 是用来指定文档如何展示给用户的一门语言——如网页的样式、布局、等等。 css语法: 选择器{ 属性名: 属性值; 属性名: 属性值; } h1 {color: red;font-size: 5em; }h1: 选择器 color: 属性 冒号之前是属性,冒号之后是值。 font-size…...
Pandas常用计算函数
目录 排序函数 nlargest函数 nsmallest函数 sort_values函数 df.sort_values Series.sort_values 聚合函数 corr函数-相关性 min函数-最小值 max函数-最大值 mean函数-平均值 sum函数-求和 count函数-统计非空数据 std函数-标准偏差 quantile函数-分位数 排序函…...
C++ | Leetcode C++题解之第473题火柴拼正方形
题目: 题解: class Solution { public:bool makesquare(vector<int>& matchsticks) {int totalLen accumulate(matchsticks.begin(), matchsticks.end(), 0);if (totalLen % 4 ! 0) {return false;}int len totalLen / 4, n matchsticks.s…...
深度解析RLS(Recursive Least Squares)算法
目录 一、引言二、RLS算法的基本思想三、RLS算法的数学推导四、RLS算法的特点五、RLS算法的应用场景六、RLS算法的局限性七、总结 一、引言 在自适应滤波领域,LMS(Least Mean Squares)算法因其计算简单、实现方便而广受欢迎。然而࿰…...
Centos 7.9NFS搭建
原创作者:运维工程师 谢晋 Centos 7.9NFS搭建 NFS服务端安装客户机访问共享配置 NFS服务端安装 SSH连接系统登录到服务端安装nfs服务 # yum -y install nfs-utils2. 安装完成后,查看需要共享的目录,这边共享的是/home目录,如…...
Python库numpy之三
Python库numpy之三 # NumPy数组创建函数二维数组创建函数numpy.eye应用例子numpy.diag应用例子numpy.vander应用例子 # NumPy数组创建函数 二维数组创建函数 numpy.eye 词法:numpy.eye(N, MNone, k0, dtype<class ‘float’>, order‘C’, *, deviceNone, …...
postgresql 安装
一、下载 PostgreSQL: File Browser 下载地址 PostgreSQL: File Browser 上传到服务器,并解压 二、安装依赖 yum install -y perl-ExtUtils-Embed readline-devel zlib-devel pam-devel libxml2-devel libxslt-devel openldap-devel 创建postgresql 和目录 useradd …...
基于机器学习的天气数据分析与预测系统
天气预报是日常生活中非常重要的信息来源,能够帮助人们合理安排日程、预防自然灾害。随着数据科学和机器学习的快速发展,传统的天气预报方法逐渐向基于数据驱动的机器学习方法转变。本文将探讨如何构建一个基于机器学习的天气数据分析与预测系统…...
Java项目-基于Springboot的在线外卖系统项目(源码+说明).zip
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…...
ANSYS Workbench纤维混凝土3D
在ANSYS Workbench建立三维纤维混凝土模型可采用CAD随机几何3D插件建模后导入,模型包含球体粗骨料、圆柱体长纤维、水泥砂浆基体等不同组分。 在CAD随机几何3D插件内设置模型参数后运行,即可在AutoCAD内建立三维纤维混凝土模型,插件支持任意…...
【Vue】Vue3.0(十)toRefs()和toRef()的区别及使用示例
上篇文章:Vue】Vue(九)OptionsAPI与CompositionAPI的区别 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年10月15日11点13分 文章目录 toRefs()和toRe…...
中科星图(GVE)——使用随机森林方法进行土地分类
目录 简介 函数 gve.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed) 代码 结果 简介 使用随机森林方法进行土地分类的步骤如下: 数据准备:收集所需的土地分类数据,并对数…...
【蓝队技能】【C2流量分析】MSFCSSliver
蓝队技能 MSF&CS&Sliver 蓝队技能总结前言一、MSF1.1 流量分析1.2 特征提取 二、CS1.1 流量分析1.2 特征提取 二、Sliver1. 特征分析 总结 前言 不同C2工具的流量特征都有细微差别,学会分析方法后就可以进行分析 一、MSF 1.1 流量分析 MSF流量特征过于明显…...
不推荐使用Scilab作为MATLAB的开源替代
安装了Scilab2024.1.0,随便试了几分钟就发现有严重影响使用的Bug(也可能是就是这样设计的,有一个所谓的“暂停模式”),复现步骤:主界面上点击“Scilab示例”按钮,打开“演示”窗口,点击左侧列表中的“多项式…...
C++智能指针及其应用
C11之后出现了 shared_ptr 和 unique_ptr,这两个类都是基于RAII技术进行设计的 RAII 利用对象生命周期来控制程序资源(如内存,文件句柄,网络连接,互斥量等资源)的技术,具体地说,就是…...
06 算法基础:算法的定义、表现形式(自然语言、伪代码、流程图)、五个特性(有穷性、确定性、可行性、输入、输出)、好算法的设计目标
目录 1 算法的定义 2 算法的三种表现形式 2.1 自然语言 2.2 伪代码 2.3 流程图 3 算法的五个特性 3.1 有穷性 3.2 确定性 3.3 可行性 3.4 输入 3.5 输出 4 好算法的设计目标 4.1 正确性 4.2 可读性 4.3 健壮性 4.4 通用性 4.5 高效率与低存储量 1 算法的定义 …...
【红外传感器】STM32C8T6标准库使用红外对管
好好学习,天天向上 前言一、了解红外二、标准库的代码1.infrared.c2.infrared.h3.main.c4 现象 总结 前言 红外线:频率介于微波与可见光之间的电磁波。 参考如下 【STM32】标准库与HAL库对照学习教程外设篇–红外避障传感器 光电红外传感器详解&#…...
STM32L010F4 最小系统设计
画一个 STM32L010F4 的测试板子...... by 矜辰所致前言 最近需要用到一个新的 MCU: STM32L010F4 ,上次测试的 VL53L0X 需要移植到这个芯片上,网上一搜 STM32L010F4,都是介绍资料,没有最小系统,使用说明等。…...
AI 工具大赏:探索智能时代的得力助手
在当今这个科技飞速发展的时代,人工智能(AI)技术已经深入到我们生活的方方面面。从日常办公到创意设计,从学术研究到娱乐休闲,AI 工具正以其强大的功能和便捷的使用体验,成为人们不可或缺的得力助手。那么&…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
