同期数分析-留存率
目录
同期数分析
加载数据
单月实现
统计每个月的订单量
求2月份的订单量和用户数量
求2月之前的历史订单量
筛选出2023年2月的新增的用户数
计算2023年2月在后面的留存情况
完整的2023年2月份同期群结果
遍历合并和分析
引入月份列表
遍历
调整成留存率的形式
回购客单的同期群实现
留存客单
同期数分析
同期群分析是数据分析中的经典思维,其核心逻辑是将用户按初始行为的发生时间划分为不同的群组,进而分析相似群组的行为如何随时间变化
举例:下表记录了每个月新购买的用户数,并统计每个月的新增用户在之后月份的复购情况
数据截止到2023年7月,如图下所示。
-
数据的第一行,2023年1月有97个新用户
-
之后的+1月(2023年2月)有46%的用户再次光顾
-
+2月(2023年3月)仍有39%的回头客
-
第一行的46%、39%都是对应复购人数占2023年1月新增购买用户的比重,这些人属于2023年1月同一期的新增用户
-
其他行也是一样的道理,每一行为同一个群组,反映同一期新增用户在之后一段时间复购行为的变化趋势。

上表的百分比为留存率,留存率=某月复购用户数/对应期新增用户数
我们也可以将留存率或者说是回购率中的回购,当做观察和分析的"行为",而如果把"回购客单价"当做追踪分析的行为,就可以从客单价的维度对用户进行分析.
前面的同期群分析是从时间的维度来划分群组的,也可以改变分组逻辑,用渠道+月份来划分群组.

加载数据
# 加载数据
import pandas as pd
df = pd.read_excel('../data/k_group_anlysis.xlsx')
df

单月实现
统计每个月的订单量
# 目标1: 统计每个月的订单量
# 1.1 加入 y_m 月份标签
df['y_m'] = df['付款时间'].astype(str).str[:7]
df['y_m'].unique()
# 1.2 统计每个月的订单量 且 排序
df['y_m'].value_counts().sort_index()

求2月份的订单量和用户数量
# 3.1 指定月份 '2023-02'
month = '2023-02'# 3.2 筛选出指定月份相关的订单(订单数量)
sample = df[df['y_m'] == month]
print("二月份的订单量: ", len(sample))# 3.3 求 指定月份 每个用户的总实付总额(用户数量)
sample_c = sample.groupby('用户ID')['实付金额'].sum().reset_index()
print("二月份的用户量: ", len(sample_c))# 3.4 打印 3.3的前5条数据
sample_c.head()

求2月之前的历史订单量
history = df[df['y_m'] == '2023-01']
history.head()
print(history['y_m'].unique())history = df.loc[df['y_m'] == '2023-01',:]
history.head()

筛选出2023年2月的新增的用户数
# 目标5: 筛选出2023年2月新增的用户数
sample_new = sample_c.loc[sample_c['用户ID'].isin(history['用户ID'])==False, :]print('2月份新增用户数: ', len(sample_new))
sample_new.head()

sample_new = sample_c.loc[sample_c['用户ID'].isin(history['用户ID'])==False, :]
历史订单量是2023年1月,通过使用isin函数筛选出不是在1月订单量中就是2月新增的订单量.
计算2023年2月在后面的留存情况
# 目标6: 计算2023年2月在后面的留存情况
# 1 准备容器
re = []# 2 遍历 ['2023-03', '2023-04', '2023-05', '2023-06','2023-07','2023-08','2023-09','2023-10','2023-11','2023-12']
for month in ['2023-03', '2023-04', '2023-05', '2023-06','2023-07','2023-08','2023-09','2023-10','2023-11','2023-12']:# print(month)# 2.1 获取下个月的数据next_month = df.loc[df['y_m'] == month, :]# print('---------------------')# print(next_month)# 2.2 获取留存的数据target_user = sample_new.loc[sample_new['用户ID'].isin(next_month['用户ID']), :]# 2.3 向容器中追加 yyyy-mm留存情况: 999re.append(f"{month} 留存情况: {len(target_user)}")# 3 验证
re

完整的2023年2月份同期群结果
# 加入新增数据,得到完整2023年2月份同期群结果
re.insert(0,['2023年2月新增用户:',len(sample_c)])
re

遍历合并和分析
引入月份列表
# 目标1 为了便于循环,我们引入了月份列表
month_lst = df['y_m'].unique()
print(month_lst)

遍历
# 1 月份列表 month_lst
month_lst = df['y_m'].unique()# 2 准备最终容器 final
final = pd.DataFrame()# 3 遍历月份列表
for i in range(len(month_lst)):# print(i, month_lst[i])# 3.1 构造和月份一样长的列表,方便后续格式统一 countcount = [0] * len(month_lst)# print(count)# 3.2 筛选出当月订单,并按用户ID分组 target_monthtarget_month = df[df['y_m'] == month_lst[i]]# print('---------------------------')# print(target_month)# 3.3 求当月订单每个用户的实付金额 target_userstarget_users = target_month.groupby("用户ID")['实付金额'].sum().reset_index()# print('---------------------------')# print(month_lst[i], len(target_users))# 3.4 判断是否是第一个月if i == 0:# 3.4.1 如果是第一个月,则跳过(因为不需要和历史数据验证是否为新增用户) new_target_usersnew_target_users = target_month.groupby("用户ID")['实付金额'].sum().reset_index()else:# 3.4.2 如果不是第一个月# 3.4.2.1 找到之前的历史订单 historyhistory = df.loc[df['y_m'].isin(month_lst[:i])]# print(history)# print('-------------------------')# 3.4.2.2 筛选出未在历史订单中出现过的新增用户 new_target_usersnew_target_users = target_users.loc[target_users['用户ID'].isin(history["用户ID"])==False,:]# 3.5 将当月新增用户数放在第一个值中count[0] = len(new_target_users)# print(count)# 3.6 以月为单位,循环遍历,计算留存情况"""for j, ct in zip(range(i+1,len(month_lst)), range(1, len(month_lst))):i = 2i+1=3, 12, [3, 4, 5, 6, 7, 8, 9, 10, 11] 1, 12, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]i = 3i+=4, 12, [4, 5, 6, 7, 8, 9, 10, 11]1, 12, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]"""for j, ct in zip(range(i+1,len(month_lst)), range(1, len(month_lst))):# 3.6.1 下一个月的订单 next_monthnext_month = df.loc[df['y_m'] == month_lst[j], :]next_users = next_month.groupby("用户ID")['实付金额'].sum().reset_index()# 3.6.2 计算在该月仍然留存的用户数量isin = new_target_users['用户ID'].isin(next_users['用户ID']).sum()count[ct] = isin# print(count)# 3.7 格式转置result = pd.DataFrame({month_lst[i] : count}).T# print(result)# print('-------------------------------')# 3.8 合并final = pd.concat([final, result], axis=0)# 4 指定列名 '当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月'
final.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月']# 5 验证
final

调整成留存率的形式
# 目标: 调整成留存率的形式
# 1 让final每个元素 除以 当月新增, 只保留 第二列往后的列内容
result = final.divide(final['当月新增'], axis = 0).iloc[:,1:]
# 2 新增当月新增列
result['当月新增'] = final['当月新增']
# 3 验证
result

回购客单的同期群实现
#引入y_m
month_lst = df['y_m'].unique()#后面加了个m,代表金额相关
final_m = pd.DataFrame()#中间代码相同
for i in range(len(month_lst) - 1):#构造和月份一样长的列表,方便后续格式统一count = [0] * len(month_lst)#筛选出当月订单,并按用户昵称分组target_month = df.loc[df['y_m'] == month_lst[i],:]target_users = target_month.groupby('用户ID')['实付金额'].sum().reset_index()#如果是第一个月,则跳过(因为不需要和历史数据验证是否为新增用户)if i == 0:new_target_users = target_month.groupby('用户ID')['实付金额'].sum().reset_index()else:#如果不是,找到之前的历史订单history = df.loc[df['y_m'].isin(month_lst[:i]),:]#筛选出未在历史订单中出现过的新增用户new_target_users = target_users.loc[target_users['用户ID'].isin(history['用户ID']) == False,:]#将当月新增用户数放在第一个值中count[0] = len(new_target_users)#以月为单位,循环遍历,计算留存情况for j,ct in zip(range(i + 1,len(month_lst)),range(1,len(month_lst))):#下一个月的订单next_month = df.loc[df['y_m'] == month_lst[j],:]next_users = next_month.groupby('用户ID')['实付金额'].sum().reset_index()#计算在该月仍然留存的用户的回购金额isin_m = next_users.loc[next_users['用户ID'].isin(new_target_users['用户ID']) == True,'实付金额'].sum()count[ct] = isin_m#格式转置result = pd.DataFrame({month_lst[i]:count}).T#合并final_m = pd.concat([final_m,result])final_m.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月']final_m

留存客单
# 留存客单
result_m = final_m / final
result_m['当月新增'] = final_m['当月新增']
result_m

相关文章:
同期数分析-留存率
目录 同期数分析 加载数据 单月实现 统计每个月的订单量 求2月份的订单量和用户数量 求2月之前的历史订单量 筛选出2023年2月的新增的用户数 计算2023年2月在后面的留存情况 完整的2023年2月份同期群结果 遍历合并和分析 引入月份列表 遍历 调整成留存率的形式 回…...
Java前后端交互:构建现代Web应用
在现代Web应用开发中,前后端分离是一种常见的架构模式。后端通常负责数据处理和业务逻辑,而前端则负责用户界面和用户体验。Java作为后端开发的强大语言,提供了多种方式与前端进行交互。本文将探讨Java后端与前端交互的几种主要方式ÿ…...
vue3中用axios请求怎么添加cookie
在 Vue 3 中使用 axios 发起请求时,可以通过配置 axios 的请求选项来携带 Cookies。具体来说,确保跨域请求时,设置 withCredentials: true,以便发送和接收 Cookies。 1. Axios 配置携带 Cookie 首先确保你在 axios 请求中设置了…...
informer学习笔记
一、informer讲解 infomer 要解决的三大问题: Attention计算的更快Decoder要一次性输出所有预测堆叠encoder也要更快 1. Attention 在长序列中,并非每一个位置的Attention都重要,对于每一个Q来说,只有一小部分的K与其有较强的…...
Elasticsearch介绍和使用
一、Elasticsearch 强大的搜索和分析能力: Elasticsearch 是一个基于 Lucene 的分布式搜索和分析引擎。它能够快速地对大量数据进行全文搜索、结构化搜索和复杂的数据分析操作。对于大型数据集,它可以高效地处理各种查询需求,包括关键词搜索…...
【Flutter】基础入门:代码基本结构
通过这个简单的 Flutter 示例程序,我们可以快速了解 Flutter 的代码结构,理解每个部分的作用。 import package:flutter/material.dart; void main() { runApp(const MyApp()); } class MyApp extends StatelessWidget { const MyApp({super.key}…...
如何进行数据库缩容 | OceanBase应用实践
作者:关炳文,爱可生 DBA 团队成员,负责数据库相关技术支持。 本文详细介绍了OceanBase V3.2版的集群中,面对数据文件缩容的场景的一套缩容方案,作为大家的参考。 缩容场景 某银行运行的一套采用1-1-1架构的OceanBase…...
机器学习和深度学习的差别
定义和基本原理 机器学习: 定义:机器学习是一种让计算机自动从数据中学习规律和模式的方法,无需明确编程。它通过构建数学模型,利用已知数据进行训练,然后对新的数据进行预测或决策。基本原理:机器学习算…...
RAG拉满-上下文embedding与大模型cache
无论怎么选择RAG的切分方案,仍然切分不准确。 最近,anthropics给出了补充上下文的embedding的方案,RAG有了新的进展和突破。 从最基础的向量查询,到上下文embedding,再到rerank的测试准确度都有了明显的改善…...
前端学习---(2)CSS基础
CSS 用来干什么? CSS 是用来指定文档如何展示给用户的一门语言——如网页的样式、布局、等等。 css语法: 选择器{ 属性名: 属性值; 属性名: 属性值; } h1 {color: red;font-size: 5em; }h1: 选择器 color: 属性 冒号之前是属性,冒号之后是值。 font-size…...
Pandas常用计算函数
目录 排序函数 nlargest函数 nsmallest函数 sort_values函数 df.sort_values Series.sort_values 聚合函数 corr函数-相关性 min函数-最小值 max函数-最大值 mean函数-平均值 sum函数-求和 count函数-统计非空数据 std函数-标准偏差 quantile函数-分位数 排序函…...
C++ | Leetcode C++题解之第473题火柴拼正方形
题目: 题解: class Solution { public:bool makesquare(vector<int>& matchsticks) {int totalLen accumulate(matchsticks.begin(), matchsticks.end(), 0);if (totalLen % 4 ! 0) {return false;}int len totalLen / 4, n matchsticks.s…...
深度解析RLS(Recursive Least Squares)算法
目录 一、引言二、RLS算法的基本思想三、RLS算法的数学推导四、RLS算法的特点五、RLS算法的应用场景六、RLS算法的局限性七、总结 一、引言 在自适应滤波领域,LMS(Least Mean Squares)算法因其计算简单、实现方便而广受欢迎。然而࿰…...
Centos 7.9NFS搭建
原创作者:运维工程师 谢晋 Centos 7.9NFS搭建 NFS服务端安装客户机访问共享配置 NFS服务端安装 SSH连接系统登录到服务端安装nfs服务 # yum -y install nfs-utils2. 安装完成后,查看需要共享的目录,这边共享的是/home目录,如…...
Python库numpy之三
Python库numpy之三 # NumPy数组创建函数二维数组创建函数numpy.eye应用例子numpy.diag应用例子numpy.vander应用例子 # NumPy数组创建函数 二维数组创建函数 numpy.eye 词法:numpy.eye(N, MNone, k0, dtype<class ‘float’>, order‘C’, *, deviceNone, …...
postgresql 安装
一、下载 PostgreSQL: File Browser 下载地址 PostgreSQL: File Browser 上传到服务器,并解压 二、安装依赖 yum install -y perl-ExtUtils-Embed readline-devel zlib-devel pam-devel libxml2-devel libxslt-devel openldap-devel 创建postgresql 和目录 useradd …...
基于机器学习的天气数据分析与预测系统
天气预报是日常生活中非常重要的信息来源,能够帮助人们合理安排日程、预防自然灾害。随着数据科学和机器学习的快速发展,传统的天气预报方法逐渐向基于数据驱动的机器学习方法转变。本文将探讨如何构建一个基于机器学习的天气数据分析与预测系统…...
Java项目-基于Springboot的在线外卖系统项目(源码+说明).zip
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…...
ANSYS Workbench纤维混凝土3D
在ANSYS Workbench建立三维纤维混凝土模型可采用CAD随机几何3D插件建模后导入,模型包含球体粗骨料、圆柱体长纤维、水泥砂浆基体等不同组分。 在CAD随机几何3D插件内设置模型参数后运行,即可在AutoCAD内建立三维纤维混凝土模型,插件支持任意…...
【Vue】Vue3.0(十)toRefs()和toRef()的区别及使用示例
上篇文章:Vue】Vue(九)OptionsAPI与CompositionAPI的区别 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年10月15日11点13分 文章目录 toRefs()和toRe…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
