《案例》—— OpenCV 实现2B铅笔填涂的答题卡答案识别
文章目录
- 一、案例介绍
- 二、代码解析
一、案例介绍
- 下面是一张使用2B铅笔填涂选项后的答题卡

- 使用OpenCV 中的各种方法进行真确答案识别,最终将正确填涂的答案用绿色圈出,错误的答案不圈出,用红色圈出错误题目的正确答案
- 最终统计正确的题目数量,并在答题卡的左上角写出分数
- 最终的结果图如下:

二、代码解析
-
先直接上完整代码:
import numpy as np import cv2""" 定义显示图片的函数 """def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)""" 寻找透视变换时的四个近似轮廓的顶点 """def order_points(pts):# 一共4个坐标rect = np.zeros((4, 2), dtype="float32")s = pts.sum(axis=1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]diff = np.diff(pts, axis=1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect""" 图像透视变换函数 """def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))return warped""" 轮廓排序函数 """def sort_contours(cnts, method='left-to-right'):reverse = Falsei = 0if method == 'right-to-left' or method == 'bottom-to-top':reverse = Trueif method == 'top-to-bottom' or method == 'bottom-to-top':i = 1boundingBoxes = [cv2.boundingRect(c) for c in cnts](cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),key=lambda b: b[1][i], reverse=reverse))# zip(*...)使用星号操作符解包排序后的元组列表,并将其重新组合成两个列表:一个包含所有轮廓,另一个包含所有边界框。return cnts, boundingBoxesANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} # 正确答案""" 图片预处理 """ image = cv2.imread('images/test_01.png') # 读取答题卡图片 contours_img = image.copy() # 复制一个原图为了后续的步骤在其上操作 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换为灰度图 """ 高斯滤波 去除图片中的噪声点 """ blurred = cv2.GaussianBlur(gray, (5, 5), 0) cv_show('blurred', blurred) # 提前定义好的用于显示图片的函数 cv_show """ 边缘检测 """ edged = cv2.Canny(blurred, 75, 200) cv_show('edged', edged) """ 轮廓检测 """ cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3) cv_show('contours_img', contours_img)""" 图像透视变换 --> 将答题卡区域提取出来 """ docCnt = None # 根据轮廓大小进行排序,准备透视变换 cnts = sorted(cnts, key=cv2.contourArea, reverse=True) # 将检测到的答题卡轮廓进行排序,其实只有一个轮廓,为了提高代码的可行性 for c in cnts:peri = cv2.arcLength(c, True) # 计算答题卡区域轮廓的面积approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 轮廓近似if len(approx) == 4:docCnt = approxbreak# 执行透视变换 warped_t = four_point_transform(image, docCnt.reshape(4, 2)) # 提前定义好的图像透视变换函数 four_point_transform warped_new = warped_t.copy() cv_show('warped', warped_t) # 转换为灰度图 warped = cv2.cvtColor(warped_t, cv2.COLOR_BGR2GRAY) # 转换为二值图片,非黑即白 thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cv_show('thresh', thresh) thresh_Contours = thresh.copy()""" 对答题卡中的每一个答案选项区域进行处理 """# 找到每一个圆圈轮廓 cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] warped_Contours = cv2.drawContours(warped_t, cnts, -1, (0, 255, 0), 1) cv_show('warped_Contours', warped_Contours)questionCnts = [] # 用于存储正确的答案选项的轮廓 for c in cnts: # 遍历轮廓并计算比例和大小# 计算每个轮廓的外接矩阵的左上角坐标(x, y), 以及宽w高h的大小(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 根据实际情况制定标准if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)""" 将每个答案的轮廓按照答题卡上的顺序正确排序后,与正确答案进行比较 """ # 先按照从上到下排序 questionCnts = sort_contours(questionCnts, method="top-to-bottom")[0] # 提前定义好的轮廓排序函数 sort_contourscorrect = 0 # 对每题的五个选项进行循环处理,并与正确答案进行比较 for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):# 在按照从左到右排序cnts = sort_contours(questionCnts[i:i + 5])[0]bubbled = None# 遍历每一个选项for (j, c) in enumerate(cnts):# 使用mask掩膜来判断结果mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)cv_show('mask', mask)# 通过计算非零点数量来算是否选择这个答案# 利用掩膜(mask)进行”与“操作,只保留mask位置中的内容thresh_mask_and = cv2.bitwise_and(thresh, thresh, mask=mask)cv_show('thresh_mask_and', thresh_mask_and)total = cv2.countNonZero(thresh_mask_and) # 统计像素值不为0的像素数if bubbled is None or total > bubbled[0]: # 通过阈值判断,保存灰度值最大的序号bubbled = (total, j)# 对比正确答案color = (0, 0, 255)k = ANSWER_KEY[q]if k == bubbled[1]: # 判断正确color = (0, 255, 0)correct += 1 # 统计正确的题目# 画出正确答案的轮廓cv2.drawContours(warped_new, [cnts[k]], -1, color, 3)cv_show('warped_new', warped_new)""" 统计得分,并在答题卡的左上角写上分数 """ score = (correct / 5.0) * 100 print("[INFO] score: {}分".format(score)) cv2.putText(warped_new, "{}".format(score), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) cv2.imshow("Original", image) cv2.imshow("Exam", warped_new) cv2.waitKey(0) -
步骤解析:
-
首先将每一题的正确答案的索引号与每一题的索引号对应上 ,以一个字典的形式保存在一个变量中
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} -
1.图片预处理
- 图像边缘检测的介绍:https://blog.csdn.net/weixin_73504499/article/details/141832066?spm=1001.2014.3001.5501
- 图像轮廓检测的介绍:https://blog.csdn.net/weixin_73504499/article/details/141873522?spm=1001.2014.3001.5501
image = cv2.imread('images/test_01.png') # 读取答题卡图片 contours_img = image.copy() # 复制一个原图为了后续的步骤在其上操作 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换为灰度图 """ 高斯滤波 去除图片中的噪声点 """ blurred = cv2.GaussianBlur(gray, (5, 5), 0) cv_show('blurred', blurred) # 提前定义好的用于显示图片的函数 cv_show """ 边缘检测 """ edged = cv2.Canny(blurred, 75, 200) cv_show('edged', edged) """ 轮廓检测 """ cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3) cv_show('contours_img', contours_img)- 效果如下:

-
2.将答题卡区域提取出来(图像透视变换),并进行处理
- 透视变换的两个关键函数的解析:https://blog.csdn.net/weixin_73504499/article/details/142864082?spm=1001.2014.3001.5501
""" 图像透视变换 --> 将答题卡区域提取出来 """ docCnt = None # 根据轮廓大小进行排序,准备透视变换 cnts = sorted(cnts, key=cv2.contourArea, reverse=True) # 将检测到的答题卡轮廓进行排序,其实只有一个轮廓,为了提高代码的可行性 for c in cnts:peri = cv2.arcLength(c, True) # 计算答题卡区域轮廓的面积approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 轮廓近似if len(approx) == 4:docCnt = approxbreak# 执行透视变换 warped_t = four_point_transform(image, docCnt.reshape(4, 2)) # 提前定义好的图像透视变换函数 four_point_transform warped_new = warped_t.copy() cv_show('warped', warped_t) # 转换为灰度图 warped = cv2.cvtColor(warped_t, cv2.COLOR_BGR2GRAY) # 转换为二值图片,非黑即白 thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cv_show('thresh', thresh) thresh_Contours = thresh.copy()- 结果如下:

-
3.对答题卡中的每一个答案选项区域进行处理
# 找到每一个圆圈轮廓 cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] warped_Contours = cv2.drawContours(warped_t, cnts, -1, (0, 255, 0), 1) cv_show('warped_Contours', warped_Contours)questionCnts = [] # 用于存储正确的答案选项的轮廓 for c in cnts: # 遍历轮廓并计算比例和大小# 计算每个轮廓的外接矩阵的左上角坐标(x, y), 以及宽w高h的大小(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 根据实际情况制定标准if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)- 结果如下:

- 结果如下:
-
4.将每个答案的轮廓按照答题卡上的顺序正确排序后,与正确答案进行比较
# 先按照从上到下排序 questionCnts = sort_contours(questionCnts, method="top-to-bottom")[0] # 提前定义好的轮廓排序函数 sort_contourscorrect = 0 # 对每题的五个选项进行循环处理,并与正确答案进行比较 for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):# 在按照从左到右排序cnts = sort_contours(questionCnts[i:i + 5])[0]bubbled = None# 遍历每一个选项for (j, c) in enumerate(cnts):# 使用mask掩膜来判断结果mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)cv_show('mask', mask)# 通过计算非零点数量来算是否选择这个答案# 利用掩膜(mask)进行”与“操作,只保留mask位置中的内容thresh_mask_and = cv2.bitwise_and(thresh, thresh, mask=mask)cv_show('thresh_mask_and', thresh_mask_and)total = cv2.countNonZero(thresh_mask_and) # 统计像素值不为0的像素数if bubbled is None or total > bubbled[0]: # 通过阈值判断,保存灰度值最大的序号bubbled = (total, j)# 对比正确答案color = (0, 0, 255)k = ANSWER_KEY[q]if k == bubbled[1]: # 判断正确color = (0, 255, 0)correct += 1 # 统计正确的题目# 画出正确答案的轮廓cv2.drawContours(warped_new, [cnts[k]], -1, color, 3)cv_show('warped_new', warped_new)- 其中部分展示效果如下:


- 结果如下:

- 其中部分展示效果如下:
-
5.统计得分,并在答题卡的左上角写上分数
""" 统计得分,并在答题卡的左上角写上分数 """ score = (correct / 5.0) * 100 print("[INFO] score: {}分".format(score)) cv2.putText(warped_new, "{}".format(score), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) cv2.imshow("Original", image) cv2.imshow("Exam", warped_new) cv2.waitKey(0)- 最终结果如下:

- 最终结果如下:
-
相关文章:
《案例》—— OpenCV 实现2B铅笔填涂的答题卡答案识别
文章目录 一、案例介绍二、代码解析 一、案例介绍 下面是一张使用2B铅笔填涂选项后的答题卡 使用OpenCV 中的各种方法进行真确答案识别,最终将正确填涂的答案用绿色圈出,错误的答案不圈出,用红色圈出错误题目的正确答案最终统计正确的题目数…...
新员工入职流程指南_完整入职流程解析
文章介绍了新员工入职流程的重要性、步骤及持续时间,并推荐ZohoPeople软件自动化管理入职流程,提升新员工入职体验,减少离职率,确保合规性,提升公司品牌形象。 一、新员工入职流程是怎样的? 入职流程是指一…...
mysql查看和修改默认配置
1.查看最大连接数 SELECT max_connections; 或者 SHOW VARIABLES LIKE max_connections;2.查看当前连接的客户端 SHOW PROCESSLIST;2.临时设置最大连接数 SET GLOBAL max_connections 500;3.临时设置连接客户端交互超时时间 SET GLOBAL interactive_timeout 1800;4.永久生…...
海外云手机:出海电商养号智能化方案
随着出海电商的迅猛发展,使用海外云手机进行养号已经成为越来越多商家的新选择。尤其在社交电商推广和短视频引流方面,海外云手机不仅提高了流量的精准度,还助力商家实现业务的快速增长。本文将探讨海外云手机养号相较于传统模式的优势&#…...
OpenAI Canvas用户反馈:并不如外界传言般“炸裂”,更不是“AGI的终极交互形态” | LeetTalk Daily...
“LeetTalk Daily”,每日科技前沿,由LeetTools AI精心筛选,为您带来最新鲜、最具洞察力的科技新闻。 Canvas作为一个独立的界面,通过与ChatGPT的结合来提升用户的协作能力和创作效率。尽管用户对其独立性与现有工具的整合存在不同…...
RiproV9.0主题wordpress主题免扩展可二开PJ版/WordPress博客主题Ripro全解密无后门版本
🔥🎉 全新RiPro9.0开源版发布 —— 探索无限可能🚀🌐 今天,我很高兴能与大家分享一个重磅资源——RiPro9.0开源版!这不是一个普通的版本,而是一个经过精心打磨、全面解密的力作。🔍…...
[LeetCode] 515. 在每个树行中找最大值
题目描述: 给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。 示例1: 输入: root [1,3,2,5,3,null,9] 输出: [1,3,9]示例2: 输入: root [1,2,3] 输出: [1,3]提示: 二叉树的节点个数的范围是 [0,10…...
【分布式微服务云原生】《微服务架构大揭秘:流行框架与服务治理攻略》
标题:《微服务架构大揭秘:流行框架与服务治理攻略》 摘要:本文深入探讨了流行的微服务架构框架,包括 Spring Cloud、Docker Kubernetes、Dubbo、Service Mesh 和 Serverless 架构,详细介绍了它们的关键组件和服务治理…...
uniapp uni.uploadFile errMsg: “uploadFile:fail
uniapp 上传后一直显示加载中 1.检查前后端上传有无问题 2.检查失败信息 await uni.uploadFile({url,filePath,name,formData,header,timeout: 30000000, // 自定义上传超时时间fail: async function(err) {$util.hideAll()// 失败// err 返回 {errMsg: "uploadFile:fai…...
一个常见问题:TCP和UDP是否可以使用一个端口
TCP(传输控制协议)和UDP(用户数据报协议)做为两种被广泛使用的协议,它们在处理数据时采用不同的机制,那么有一个问题,在同一系统内,TCP和UDP的服务是否可以使用同一个端口呢…...
前端报错:‘vue-cli-service‘ 不是内部或外部命令,也不是可运行的程序(node_modules下载不下来)
原因:Vue CLI 没有被正确安装,或者其安装路径没有被添加到你的系统环境变量中。 一、确认 Vue CLI 是否已安装: 打开命令行工具(例如 CMD、PowerShell、Terminal),输入以下命令来检查 Vue CLI 是否已安装…...
白日门【鬼服无限刀】win服务端+安卓客户端+教程+GM后台
演示系统:Windows Server 2012 -------------------------------------------------------------------------------------------------------------------------- 把服务端上传解压缩到服务器D盘根目录:D:\【解压完成后检查路径是否正确:D:\】 安装基础运行环境&…...
如何迅速的了解一个人
目录 社会经济背景 生活满意度 爱心和同情心 如果你想迅速地了解一个人,问他问题是最快捷的方法。不论你是相亲、工作、而试、看医生还是为孩子找个学校,事先设计好你想提出的问题,想好你究竟要搜罗对方哪一方面的信息这样做会实现许多目…...
Window和Linux远程调度kettle
在windows和linux分别安装kettle,我的是pdi-ce-8.2.0.0-342版本,在windows中配置好之后,直接放到虚拟机的目录下 在cmd窗口中到kettle根目录下执行 (carte ip 端口 ),出现如下提示即启动成功 在远程端…...
设定义结构变量
在C语言中,可以使用struct关键字来定义结构变量。结构变量是由多个不同类型的成员变量组成的数据类型,可以在一个变量中存储多个相关的数据。 定义结构变量的语法如下: struct 结构名 {数据类型 成员1;数据类型 成员2;... };例如࿰…...
SSD |(七)FTL详解(中)
文章目录 📚垃圾回收🐇垃圾回收原理🐇写放大🐇垃圾回收实现🐇垃圾回收时机 📚解除映射关系📚磨损均衡 📚垃圾回收 🐇垃圾回收原理 ✋设定一个迷你SSD空间: 假…...
Swift 协议:深入解析与高级应用
Swift 协议:深入解析与高级应用 Swift 协议是 Swift 编程语言中的一项核心特性,它提供了一种定义接口和实现多态的强大方式。本文将深入探讨 Swift 协议的概念、用法和高级应用,帮助读者更好地理解和运用这一特性。 什么是 Swift 协议&…...
API项目3:API签名认证
问题引入 我们为开发者提供了接口,却对调用者一无所知 假设我们的服务器只能允许 100 个人同时调用接口。如果有攻击者疯狂地请求这个接口,那是很危险的。一方面这可能会损害安全性,另一方面耗尽服务器性能,影响正常用户的使用。…...
unity学习-Directional light光的设置
ccColor:环境光的颜色 Mode:灯光模式,Realtime(实时光影),实时计算光影,消耗性能但是效果好,Baked烘焙光影,将光的照射效果作为贴图贴在静态的物体上形成一种虚假的光照…...
简单实现通过电脑操作手机
通过电脑操作手机,支持单击,拖抓事件,延时有1-2秒。 具体步骤: 1、从手机截图到sdcard 2、将图片导出到PC 3、从PC加载展示图片 4、开启定时器 5、设置点击、滚动事件 1、 private static void takeScreenshot(String path)…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
