当前位置: 首页 > news >正文

《计算机视觉》—— 表情识别

  • 根据计算眼睛、嘴巴的变化,判断是什么表情
  • 结合以下两篇文章来理解表情识别的实现方法
    • 基于 dilib 库的人脸检测
      • https://blog.csdn.net/weixin_73504499/article/details/142977202?spm=1001.2014.3001.5501
    • 基于 dlib 库的人脸关键点定位
      • https://blog.csdn.net/weixin_73504499/article/details/142990867?spm=1001.2014.3001.5501
  • 完整代码如下:
    import numpy as np
    import dlib
    import cv2
    from sklearn.metrics.pairwise import euclidean_distances
    from PIL import Image, ImageDraw, ImageFont# 计算眼睛的宽高比
    def eye_aspect_ratio(eye):A = euclidean_distances(eye[1].reshape(1, 2), eye[5].reshape(1, 2))B = euclidean_distances(eye[2].reshape(1, 2), eye[4].reshape(1, 2))C = euclidean_distances(eye[0].reshape(1, 2), eye[3].reshape(1, 2))ear = ((A + B) / 2.0) / Creturn ear# 计算嘴的宽高比
    def MAR(shape):x = shape[50]y = shape[50].reshape(1, 2)A = euclidean_distances(shape[50].reshape(1, 2), shape[58].reshape(1, 2))B = euclidean_distances(shape[51].reshape(1, 2), shape[57].reshape(1, 2))C = euclidean_distances(shape[52].reshape(1, 2), shape[56].reshape(1, 2))D = euclidean_distances(shape[48].reshape(1, 2), shape[54].reshape(1, 2))return ((A + B + C) / 3) / D# 计算嘴宽度与脸颊宽度的比值
    def MJR(shape):M = euclidean_distances(shape[48].reshape(1, 2), shape[54].reshape(1, 2))  # 嘴宽度J = euclidean_distances(shape[3].reshape(1, 2), shape[13].reshape(1, 2))  # 下颌的宽度return M / J""" 向图片中添加中文 """
    def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):if (isinstance(img, np.ndarray)):  # 判断是否是OpenCV图片类型img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 实现 array 到 image 的转换draw = ImageDraw.Draw(img)  # 在img图片上创建一个绘图的对象# 字体的格式                       C 盘中的 Windows/Fonts 中,复制到此文件夹下可看到文件名fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")draw.text(position, text, textColor, font=fontStyle)  # 绘制文本return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)  # 转换回 OpenCV 格式# 构建脸部位置检测器
    detector = dlib.get_frontal_face_detector()# 读取人脸关键点定位模型
    predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")# 打开摄像头或视频
    cap = cv2.VideoCapture(0)while True:ret, frame = cap.read()frame = cv2.flip(frame, 1)faces = detector(frame, 0)  # 获取图片中全部人脸位置for face in faces:shape = predictor(frame, face)  # 获取关键点# 将关键点转换为坐标(x,y)的形式shape = np.array([[p.x, p.y] for p in shape.parts()])# 计算嘴部的高宽比mar = MAR(shape)# 计算 “最宽/脸颊宽”mjr = MJR(shape)rightEye = shape[36:42]  # 右眼,关键点索引从36到41(不包含42)leftEye = shape[42:48]  # 左眼,关键点索引从42到47(不包含48)rightEAR = eye_aspect_ratio(rightEye)  # 计算右眼纵横比leftEAR = eye_aspect_ratio(leftEye)  # 计算左眼纵横比ear = (rightEAR + leftEAR) / 2.0  # 均值处理result = "正常"  # 默认是正常表情# 打印出实际值,可以根据该值更改阈值print("mar", mar, "\tmjr", mjr, "\tear", ear)if mar > 0.5 and ear < 0.28:result = "大笑"elif mar > 0.5 and ear > 0.28:result = "愤怒"elif mjr > 0.45:result = "微笑"# 输出中文# frame = cv2AddChineseText(frame, result, (50, 100))# cv2.putText()#输出英文mouthHull = cv2.convexHull(shape[48:61])  # 嘴型构造凸包frame = cv2AddChineseText(frame, result, mouthHull[0, 0])  # 多人脸cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)  # 画出凸包cv2.imshow("Frame", frame)if cv2.waitKey(1) == 27:breakcv2.destroyAllWindows()
    cap.release()

相关文章:

《计算机视觉》—— 表情识别

根据计算眼睛、嘴巴的变化&#xff0c;判断是什么表情结合以下两篇文章来理解表情识别的实现方法 基于 dilib 库的人脸检测 https://blog.csdn.net/weixin_73504499/article/details/142977202?spm1001.2014.3001.5501 基于 dlib 库的人脸关键点定位 https://blog.csdn.net/we…...

NVIDIA Aerial Omniverse

NVIDIA Aerial Omniverse 数字孪生助力打造新一代无线网络 文章目录 前言一、从链路级仿真到系统级仿真二、转变无线研发方式1. 开放且可定制的模块化平台2. 适用于 6G 标准化的 3GPP 兼容平台3. 部署前测试4. AI 和 ML 在数字孪生中的应用5. 高级物理精准的电磁求解器6. 合作伙…...

QT程序报错解决方案:Cannot queue arguments of type ‘QTextCharFormat‘ 或 ‘QTextCursor‘

项目场景&#xff1a; 项目场景&#xff1a;基于QT实现的C某程序&#xff0c;搭载在Linux环境中。 问题描述 执行程序时&#xff0c;发现log中报错如下内容&#xff1a; QObject::connect: Cannot queue arguments of type QTextCharFormat (Make sure QTextCharFormat is r…...

MySQL知识点_03

MySQL 命令大全 基础命令 操作命令连接到 MySQL 数据库mysql -u 用户名 -p查看所有数据库SHOW DATABASES;选择一个数据库USE 数据库名;查看所有表SHOW TABLES;查看表结构DESCRIBE 表名; 或 SHOW COLUMNS FROM 表名;创建一个新数据库CREATE DATABASE 数据库名;删除一个数据库D…...

leetcode:744. 寻找比目标字母大的最小字母(python3解法)

难度&#xff1a;简单 给你一个字符数组 letters&#xff0c;该数组按非递减顺序排序&#xff0c;以及一个字符 target。letters 里至少有两个不同的字符。 返回 letters 中大于 target 的最小的字符。如果不存在这样的字符&#xff0c;则返回 letters 的第一个字符。 示例 1&a…...

2015年-2016年 软件工程程序设计题(算法题)实战_c语言程序设计数据结构程序设计分析

文章目录 2015年1.c语言程序设计部分2.数据结构程序设计部分 2016年1.c语言程序设计部分2.数据结构程序设计部分 2015年 1.c语言程序设计部分 1.从一组数据中选择最大的和最小的输出。 void print_maxandmin(double a[],int length) //在一组数据中选择最大的或者最小的输出…...

整理一下实际开发和工作中Git工具的使用 (持续更新中)

介绍一下Git 在实际开发和工作中&#xff0c;Git工具的使用可以说是至关重要的&#xff0c;它不仅提高了团队协作的效率&#xff0c;还帮助开发者有效地管理代码版本。以下是对Git工具使用的扩展描述&#xff1a; 版本控制&#xff1a;Git能够跟踪代码的每一个修改记录&#x…...

Axios 的基本使用与 Fetch 的比较、在 Vue 项目中使用 Axios 的最佳实践

文章目录 1. 引言2. Axios 的基本使用2.1 安装 Axios2.2 发起 GET 请求2.3 发起 POST 请求2.4 请求拦截器2.5 设置全局配置 3. Axios 与 Fetch 的比较3.1 Axios 与 Fetch 的异同点3.2 Fetch 的基本使用3.3 使用 Fetch 处理 POST 请求 4. 讨论在 Vue 项目中使用 Axios 的最佳实践…...

Dockerfile样例

一、基础jar镜像制作 ## Dockerfile FROM registry.openanolis.cn/openanolis/anolisos:8.9 RUN mkdir /work ADD jdk17.tar.gz fonts.tar.gz /work/ RUN yum install fontconfig ttmkfdir -y && yum clean all && \chmod -R 755 /work/fonts ADD fonts.conf …...

MYSQL-多表查询

一、概述 1、定义 多表查询&#xff0c;也称为关联查询&#xff0c;指两个或更多个表一起完成查询操作。 2、前提条件 这些一起查询的表之间是有关系的&#xff08;一对一、一对多&#xff09;&#xff0c;它们之间一定是有关联字段&#xff0c;这个关联字段可能建立了外键…...

MySQL改密码后不生效问题

MySQL修改密码后连接报密码错误 1.mysql修改密码命令&#xff1a; 这两种连接方式密码都必须修改 修改远程连接密码 ALTER USER ‘root’‘%’ IDENTIFIED BY ‘password’; 修改本地连接密码 ALTER USER ‘root’‘localhost’ IDENTIFIED BY ‘password’; 修改完后必须刷新…...

15分钟学Go 第1天:Go语言简介与特点

Go语言简介与特点 1. Go语言概述 Go语言&#xff08;又称Golang&#xff09;是由谷歌于2007年开发并在2009年正式发布的一种开源编程语言。它旨在简单、高效地进行软件开发&#xff0c;尤其适合于网络编程和分布式系统。 1.1 发展背景 多核处理器&#xff1a;随着计算机硬件…...

UDP/TCP协议

网络层只负责将数据包送达至目标主机&#xff0c;并不负责将数据包上交给上层的哪一个应用程序&#xff0c;这是传输层需要干的事&#xff0c;传输层通过端口来区分不同的应用程序。传输层协议主要分为UDP&#xff08;用户数据报协议&#xff09;和TCP&#xff08;传输控制协议…...

gitee建立/取消关联仓库

目录 一、常用指令总结 二、建立关联具体操作 三、取消关联具体操作 一、常用指令总结 首先要选中要关联的文件&#xff0c;右击&#xff0c;选择Git Bash Here。 git remote -v //查看自己的文件有几个关联的仓库git init //初始化文件夹为git可远程建立链接的文件夹…...

在 Windows 环境下,Git 默认会自动处理 CRLF 和 LF 之间的转换。

在 Windows 环境下&#xff0c;Git 默认会自动处理 CRLF 和 LF 之间的转换。 要确保这一点并自动处理换行符差异&#xff0c;你可以按照以下步骤配置 1. 配置 Git 自动转换 CRLF 使用 Git Bash 或命令行执行以下命令&#xff0c;设置 Git 自动处理换行符&#xff1a; git con…...

Kibana可视化Dashboard如何基于字段是否包含某关键词进行过滤

kinana是一个功能强大、可对Elasticsearch数据进行可视化的开源工具。 我们在dashboard创建可视化时&#xff0c;有时需要将某个index里数据的某个字段根据是否包含某些特定关键词进行过滤&#xff0c;这个时候就可以用到lens里的filter功能很方便地进行操作。 如上图所示&…...

架构师之路-学渣到学霸历程-23

实战&#xff1a;NFS安装部署 接早上了解过了NFS的一些基本原理&#xff0c;咋们就看看一些实战&#xff1b; 尝试自己部署一下实验&#xff1b;然后实验成功了是我们最大的鼓励来着&#xff1b; 实战过程中&#xff0c;我们也面临了很多报错&#xff1b;所以每个实战的报错我…...

怎么修改编辑PDF的内容,有这4个工具就行了。

PDF 软件在现代的办公或者是学习当中的应用非常广泛&#xff0c;编辑PDF内容对很多人来说也是一件常有的事情。如果有了PDF 编辑软件&#xff0c;查看&#xff0c;编辑&#xff0c;修改&#xff0c;分享也会变得更加方便简单&#xff0c;所以今天要给大家介绍几款这样的工具。 …...

腾讯云宝塔面板前后端项目发版

后端发版 1. 打开“网站”页面&#xff0c;找到java项目&#xff0c;点击状态暂停服务 2.打开“文件”页面&#xff0c;进入jar包目录&#xff0c;删除原有的jar包&#xff0c;上传新jar包 3. 再回到第一步中的网站页面&#xff0c;找到jar项目&#xff0c;启动项目即可 前端发…...

C语言的结构体定义 java赋值关系运算符

1. /*#include<stdio.h> struct student { int num; //成员列表 int score; float avg; }; int main(void) { struct student Tom;//Tom结构体变量 struct student class4[50];//结构体数组 return 0; }*/ struct student { int nu…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...