《计算机视觉》—— 表情识别
- 根据计算眼睛、嘴巴的变化,判断是什么表情
- 结合以下两篇文章来理解表情识别的实现方法
- 基于 dilib 库的人脸检测
- https://blog.csdn.net/weixin_73504499/article/details/142977202?spm=1001.2014.3001.5501
- 基于 dlib 库的人脸关键点定位
- https://blog.csdn.net/weixin_73504499/article/details/142990867?spm=1001.2014.3001.5501
- 基于 dilib 库的人脸检测
- 完整代码如下:
import numpy as np import dlib import cv2 from sklearn.metrics.pairwise import euclidean_distances from PIL import Image, ImageDraw, ImageFont# 计算眼睛的宽高比 def eye_aspect_ratio(eye):A = euclidean_distances(eye[1].reshape(1, 2), eye[5].reshape(1, 2))B = euclidean_distances(eye[2].reshape(1, 2), eye[4].reshape(1, 2))C = euclidean_distances(eye[0].reshape(1, 2), eye[3].reshape(1, 2))ear = ((A + B) / 2.0) / Creturn ear# 计算嘴的宽高比 def MAR(shape):x = shape[50]y = shape[50].reshape(1, 2)A = euclidean_distances(shape[50].reshape(1, 2), shape[58].reshape(1, 2))B = euclidean_distances(shape[51].reshape(1, 2), shape[57].reshape(1, 2))C = euclidean_distances(shape[52].reshape(1, 2), shape[56].reshape(1, 2))D = euclidean_distances(shape[48].reshape(1, 2), shape[54].reshape(1, 2))return ((A + B + C) / 3) / D# 计算嘴宽度与脸颊宽度的比值 def MJR(shape):M = euclidean_distances(shape[48].reshape(1, 2), shape[54].reshape(1, 2)) # 嘴宽度J = euclidean_distances(shape[3].reshape(1, 2), shape[13].reshape(1, 2)) # 下颌的宽度return M / J""" 向图片中添加中文 """ def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):if (isinstance(img, np.ndarray)): # 判断是否是OpenCV图片类型img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 实现 array 到 image 的转换draw = ImageDraw.Draw(img) # 在img图片上创建一个绘图的对象# 字体的格式 C 盘中的 Windows/Fonts 中,复制到此文件夹下可看到文件名fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")draw.text(position, text, textColor, font=fontStyle) # 绘制文本return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) # 转换回 OpenCV 格式# 构建脸部位置检测器 detector = dlib.get_frontal_face_detector()# 读取人脸关键点定位模型 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")# 打开摄像头或视频 cap = cv2.VideoCapture(0)while True:ret, frame = cap.read()frame = cv2.flip(frame, 1)faces = detector(frame, 0) # 获取图片中全部人脸位置for face in faces:shape = predictor(frame, face) # 获取关键点# 将关键点转换为坐标(x,y)的形式shape = np.array([[p.x, p.y] for p in shape.parts()])# 计算嘴部的高宽比mar = MAR(shape)# 计算 “最宽/脸颊宽”mjr = MJR(shape)rightEye = shape[36:42] # 右眼,关键点索引从36到41(不包含42)leftEye = shape[42:48] # 左眼,关键点索引从42到47(不包含48)rightEAR = eye_aspect_ratio(rightEye) # 计算右眼纵横比leftEAR = eye_aspect_ratio(leftEye) # 计算左眼纵横比ear = (rightEAR + leftEAR) / 2.0 # 均值处理result = "正常" # 默认是正常表情# 打印出实际值,可以根据该值更改阈值print("mar", mar, "\tmjr", mjr, "\tear", ear)if mar > 0.5 and ear < 0.28:result = "大笑"elif mar > 0.5 and ear > 0.28:result = "愤怒"elif mjr > 0.45:result = "微笑"# 输出中文# frame = cv2AddChineseText(frame, result, (50, 100))# cv2.putText()#输出英文mouthHull = cv2.convexHull(shape[48:61]) # 嘴型构造凸包frame = cv2AddChineseText(frame, result, mouthHull[0, 0]) # 多人脸cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1) # 画出凸包cv2.imshow("Frame", frame)if cv2.waitKey(1) == 27:breakcv2.destroyAllWindows() cap.release()
相关文章:
《计算机视觉》—— 表情识别
根据计算眼睛、嘴巴的变化,判断是什么表情结合以下两篇文章来理解表情识别的实现方法 基于 dilib 库的人脸检测 https://blog.csdn.net/weixin_73504499/article/details/142977202?spm1001.2014.3001.5501 基于 dlib 库的人脸关键点定位 https://blog.csdn.net/we…...
NVIDIA Aerial Omniverse
NVIDIA Aerial Omniverse 数字孪生助力打造新一代无线网络 文章目录 前言一、从链路级仿真到系统级仿真二、转变无线研发方式1. 开放且可定制的模块化平台2. 适用于 6G 标准化的 3GPP 兼容平台3. 部署前测试4. AI 和 ML 在数字孪生中的应用5. 高级物理精准的电磁求解器6. 合作伙…...
QT程序报错解决方案:Cannot queue arguments of type ‘QTextCharFormat‘ 或 ‘QTextCursor‘
项目场景: 项目场景:基于QT实现的C某程序,搭载在Linux环境中。 问题描述 执行程序时,发现log中报错如下内容: QObject::connect: Cannot queue arguments of type QTextCharFormat (Make sure QTextCharFormat is r…...
MySQL知识点_03
MySQL 命令大全 基础命令 操作命令连接到 MySQL 数据库mysql -u 用户名 -p查看所有数据库SHOW DATABASES;选择一个数据库USE 数据库名;查看所有表SHOW TABLES;查看表结构DESCRIBE 表名; 或 SHOW COLUMNS FROM 表名;创建一个新数据库CREATE DATABASE 数据库名;删除一个数据库D…...
leetcode:744. 寻找比目标字母大的最小字母(python3解法)
难度:简单 给你一个字符数组 letters,该数组按非递减顺序排序,以及一个字符 target。letters 里至少有两个不同的字符。 返回 letters 中大于 target 的最小的字符。如果不存在这样的字符,则返回 letters 的第一个字符。 示例 1&a…...
2015年-2016年 软件工程程序设计题(算法题)实战_c语言程序设计数据结构程序设计分析
文章目录 2015年1.c语言程序设计部分2.数据结构程序设计部分 2016年1.c语言程序设计部分2.数据结构程序设计部分 2015年 1.c语言程序设计部分 1.从一组数据中选择最大的和最小的输出。 void print_maxandmin(double a[],int length) //在一组数据中选择最大的或者最小的输出…...
整理一下实际开发和工作中Git工具的使用 (持续更新中)
介绍一下Git 在实际开发和工作中,Git工具的使用可以说是至关重要的,它不仅提高了团队协作的效率,还帮助开发者有效地管理代码版本。以下是对Git工具使用的扩展描述: 版本控制:Git能够跟踪代码的每一个修改记录&#x…...
Axios 的基本使用与 Fetch 的比较、在 Vue 项目中使用 Axios 的最佳实践
文章目录 1. 引言2. Axios 的基本使用2.1 安装 Axios2.2 发起 GET 请求2.3 发起 POST 请求2.4 请求拦截器2.5 设置全局配置 3. Axios 与 Fetch 的比较3.1 Axios 与 Fetch 的异同点3.2 Fetch 的基本使用3.3 使用 Fetch 处理 POST 请求 4. 讨论在 Vue 项目中使用 Axios 的最佳实践…...
Dockerfile样例
一、基础jar镜像制作 ## Dockerfile FROM registry.openanolis.cn/openanolis/anolisos:8.9 RUN mkdir /work ADD jdk17.tar.gz fonts.tar.gz /work/ RUN yum install fontconfig ttmkfdir -y && yum clean all && \chmod -R 755 /work/fonts ADD fonts.conf …...
MYSQL-多表查询
一、概述 1、定义 多表查询,也称为关联查询,指两个或更多个表一起完成查询操作。 2、前提条件 这些一起查询的表之间是有关系的(一对一、一对多),它们之间一定是有关联字段,这个关联字段可能建立了外键…...
MySQL改密码后不生效问题
MySQL修改密码后连接报密码错误 1.mysql修改密码命令: 这两种连接方式密码都必须修改 修改远程连接密码 ALTER USER ‘root’‘%’ IDENTIFIED BY ‘password’; 修改本地连接密码 ALTER USER ‘root’‘localhost’ IDENTIFIED BY ‘password’; 修改完后必须刷新…...
15分钟学Go 第1天:Go语言简介与特点
Go语言简介与特点 1. Go语言概述 Go语言(又称Golang)是由谷歌于2007年开发并在2009年正式发布的一种开源编程语言。它旨在简单、高效地进行软件开发,尤其适合于网络编程和分布式系统。 1.1 发展背景 多核处理器:随着计算机硬件…...
UDP/TCP协议
网络层只负责将数据包送达至目标主机,并不负责将数据包上交给上层的哪一个应用程序,这是传输层需要干的事,传输层通过端口来区分不同的应用程序。传输层协议主要分为UDP(用户数据报协议)和TCP(传输控制协议…...
gitee建立/取消关联仓库
目录 一、常用指令总结 二、建立关联具体操作 三、取消关联具体操作 一、常用指令总结 首先要选中要关联的文件,右击,选择Git Bash Here。 git remote -v //查看自己的文件有几个关联的仓库git init //初始化文件夹为git可远程建立链接的文件夹…...
在 Windows 环境下,Git 默认会自动处理 CRLF 和 LF 之间的转换。
在 Windows 环境下,Git 默认会自动处理 CRLF 和 LF 之间的转换。 要确保这一点并自动处理换行符差异,你可以按照以下步骤配置 1. 配置 Git 自动转换 CRLF 使用 Git Bash 或命令行执行以下命令,设置 Git 自动处理换行符: git con…...
Kibana可视化Dashboard如何基于字段是否包含某关键词进行过滤
kinana是一个功能强大、可对Elasticsearch数据进行可视化的开源工具。 我们在dashboard创建可视化时,有时需要将某个index里数据的某个字段根据是否包含某些特定关键词进行过滤,这个时候就可以用到lens里的filter功能很方便地进行操作。 如上图所示&…...
架构师之路-学渣到学霸历程-23
实战:NFS安装部署 接早上了解过了NFS的一些基本原理,咋们就看看一些实战; 尝试自己部署一下实验;然后实验成功了是我们最大的鼓励来着; 实战过程中,我们也面临了很多报错;所以每个实战的报错我…...
怎么修改编辑PDF的内容,有这4个工具就行了。
PDF 软件在现代的办公或者是学习当中的应用非常广泛,编辑PDF内容对很多人来说也是一件常有的事情。如果有了PDF 编辑软件,查看,编辑,修改,分享也会变得更加方便简单,所以今天要给大家介绍几款这样的工具。 …...
腾讯云宝塔面板前后端项目发版
后端发版 1. 打开“网站”页面,找到java项目,点击状态暂停服务 2.打开“文件”页面,进入jar包目录,删除原有的jar包,上传新jar包 3. 再回到第一步中的网站页面,找到jar项目,启动项目即可 前端发…...
C语言的结构体定义 java赋值关系运算符
1. /*#include<stdio.h> struct student { int num; //成员列表 int score; float avg; }; int main(void) { struct student Tom;//Tom结构体变量 struct student class4[50];//结构体数组 return 0; }*/ struct student { int nu…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
网页端 js 读取发票里的二维码信息(图片和PDF格式)
起因 为了实现在报销流程中,发票不能重用的限制,发票上传后,希望能读出发票号,并记录发票号已用,下次不再可用于报销。 基于上面的需求,研究了OCR 的方式和读PDF的方式,实际是可行的ÿ…...
GC1808:高性能音频ADC的卓越之选
在音频处理领域,高质量的音频模数转换器(ADC)是实现精准音频数字化的关键。GC1808,一款96kHz、24bit立体声音频ADC,以其卓越的性能和高性价比脱颖而出,成为众多音频设备制造商的理想选择。 GC1808集成了64倍…...
