当前位置: 首页 > news >正文

大模型涌现判定

什么是大模型?

大模型:是“规模足够大,训练足够充分,出现了涌现”的深度学习系统;

大模型技术的革命性:延申了人的器官的功能,带来了生产效率量级提升,展现了AGI的可行路径;

大模型的三个关键能力(涌现的行为):ICL(情景学习能力),CoT(深度推理能力),LNI(自然指令学习)

大模型智能涌现现象:

数据型规模达到一定水平时,在新任务上的性能显著提高,超出平均水平。

大模型的尺度(scaling laws):

大模型的泛化表现与学习质量、训练数据规模、参数规模呈指数率关系。

智能涌现:自然现象与多学科启示

智能涌现:由个体的相互作用(简单规则)导致非常智能(复杂而有序)的整体行为。

物理观点:对称性破缺是基础(Anderson,more is different,Science,1972):尺度是根本要素:1)划分尺度  2)出现新的因果  3)选择最强因果性——因果涌现。

数学观点:极限所展示的行为(极限是开拓认知边界的利器)

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        e= \sum_{n=0}^{\infty }\frac{1}{n!}=\lim_{x\rightarrow \infty }(1+\frac{1}{x})^{x}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \Pi =4\sum_{n=0}^{\infty }\frac{(-1)^{n}}{2n+1}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \sqrt{2} =\lim_{n\rightarrow \infty }x_{n},x_{n}=1+\frac{1}{1+x_{n}}

大模型智能涌现与尺度率:数学建模

假设\varepsilon (N,P,\partial l)是解决任务T的性态函数(如泛化性度量)大模型的智能行为能够通过性态函数反应。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \varepsilon (N,P,\partial l)\rightarrow \varepsilon (\infty ,\infty ,0)(任何意义下)

由此推得

        ​​​​​​​        ​​​​​​​        \varepsilon (\infty ,\infty ,0)-\epsilon \leq inf_{N,P,\partial l} (\varepsilon (N,P,\partial l))\leq \varepsilon (\infty ,\infty ,0)+\epsilon

大模型是否存在相变?  存在性就意味着相变!

大模型能不能工作更好?  \varepsilon (\infty ,\infty ,0)度量了相变后行为!

大模型涌现的判定准则

大模型与极限架构:有限vs无限

模型架构:以“功能块+基块周期性重复”为结构的大规模深度神经网络(映射功能)

一个大模型架构由若干个功能块组成。固定一个功能块,假设该功能含k个基块,且第i个基块定义映射T_{i },则该功能可以表示为k个算子的复合,即

        ​​​​​​​        ​​​​​​​        ​​​​​​​                ​​​​​​​        ​​​​​​​f_{wp}=T_{w_{k}}\cdot T_{w_{K-1}}\cdot ...\cdot T_{w_{1}}:\chi \rightarrow y                                                

        假设宽度有限,P是K个基块的参数总规模,w_{p}= [w_{1}...w_{n}]是功能块所有参数。

而无限维系统为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​      f_{w}^{*}=\lim_{p\rightarrow \infty }f_{wp}

本模型极限架构的存在性等价于算子无穷乘积的收敛性。

通过引入非线性Lipschitz算子及特征数(涉及泛函分析,此处不细讲)可以用于描述大模型涌现或尺度率的判定条件。

结论:涌现存在的条件

1)通常假设1和假设3作为A的前提假设,因而上述定理说明:如果大模型的权值能最优设置,而且其基块满足LipLip(T_{i})\leq 1且满足自映射条件,或m(A_{i})\geq 0且满足极大单调性条件,则当模型规模,训练数据规模趋于无穷时,则大模型一定会出现涌现。

2) 极限架构行为即表现为涌现具体可刻画可通过选择特定的\varepsilon形式(包括线性和损失函数)

结论:模型规模尺度率

模型规模尺度率为指数律或幂率,取决于模型基块的组装方式:A.模式(残差式)要求的条件m(A)>0,一般总是弱于T模式(堆叠式)条件Lip(T)<1,但以收敛速度更慢为代价。

只剩下偏差(红线),即大模型的插值性将导致泛化性,大模型具有抗耐噪性 

一些可以进一步深化的问题?

来自徐宗本院士的分享!

相关文章:

大模型涌现判定

什么是大模型&#xff1f; 大模型&#xff1a;是“规模足够大&#xff0c;训练足够充分&#xff0c;出现了涌现”的深度学习系统&#xff1b; 大模型技术的革命性&#xff1a;延申了人的器官的功能&#xff0c;带来了生产效率量级提升&#xff0c;展现了AGI的可行路径&#x…...

LeetCode 1456.定长子串中元音的最大数目

题目&#xff1a; 给你字符串 s 和整数 k 。 请返回字符串 s 中长度为 k 的单个子字符串中可能包含的最大元音字母数。 英文中的 元音字母 为&#xff08;a, e, i, o, u&#xff09;。 思路&#xff1a;定长滑动窗口 入 更新 出 代码&#xff1a; class Solution {pub…...

freeswitch-esl 三方设备实现监听功能

使用场景: A和B在通话中,C想监听A和B通话内容 方法一: 修改拨号计划<extension name="global" continue="true"><condition><action application="info"/>...

【LeetCode】123.买卖股票的最佳时间

清晰明了的思路是解决问题的至上法宝。如何把一个复杂的问题拆成简单的问题&#xff0c;就是我们需要考虑的。 1. 题目 2. 思想 这道题虽然是难题&#xff0c;但是思想比较简单。 题目要求说至多买卖两次&#xff0c;也就是说&#xff0c;也可以买卖一次&#xff0c;这种情况…...

elk部署安装

elk部署 前提准备1、elasticsearch2、kibana3、logstash 前提准备 1、提前装好docker docker-compose相关命令 2、替换docker仓库地址国内镜像源 cd /etc/docker vi daemon.json # 替换内容 {"registry-mirrors": [ "https://docker.1panel.dev", "ht…...

使用 JAX 进行 LLM 分布式监督微调

LLM distributed supervised fine-tuning with JAX — ROCm Blogs (amd.com) 24年1月25日&#xff0c;Douglas Jia 发布在AMD ROCm 博客上的文章。 在这篇文章中&#xff0c;我们回顾了使用 JAX 对基于双向编码器表示&#xff08;BERT&#xff09;的大型语言模型&#xff08;LL…...

【简单版】通过 Window.performance 实现前端页面(性能)监控

1 背景 前端监控系统告警xx接口fetchError 问题&#xff1a;前端监控系统没有更多的错误信息&#xff0c;查询该fetch请求对应的接口日志返回200状态码、无请求异常记录&#xff0c;且后台能查到通过该fetch请求成功发送的数据。那是前端页面的错误还是前端监控系统的问题&…...

微信小程序考试系统(lw+演示+源码+运行)

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了微信小程序考试系统的开发全过程。通过分析微信小程序考试系统管理的不足&#xff0c;创建了一个计算机管理微信小程序考试系统的方案。文章介绍了微信小程序考…...

手机摄影入门

感觉会摄影的人是能够从生活中发现美的人。 我不太会拍照&#xff0c;觉得拍好的照片比较浪费时间&#xff0c;而且缺乏审美也缺乏技巧&#xff0c;所以拍照的时候总是拍不好。但有时候还是需要拍一些好看的照片的。 心态和审美可能需要比较长时间提升&#xff0c;但一些基础…...

微信小程序手机号授权获取(aes加密手机号)

<view class="container"> <view class=topTabSwiper> <view class=tab {{currentData == 0 ? "tabBorer" : ""}} data-current = "0" bindtap=checkCurrent>一键授权<span class="tab_bor"><…...

asyn queueRequest使用实例

使用queueRequest读写端口驱动的示例&#xff0c;驱动驱动程序使用一个基于asyn实现了asynCommon和asynOctet的驱动程序-CSDN博客中编写的驱动程序&#xff0c;本程序的C代码如下&#xff1a; #include <stdlib.h> #include <stdio.h> #include <string.h>#…...

关于jmeter设置为中文问题之后无法保存设置的若干问题

1、jemeter如何设置中文模式 Options--->Choose Language--->Chinese(Simplifies), 如此设置后就可显示中文模式(缺点&#xff1a;下次打开还是英文)&#xff1b;如下图所示&#xff1a; 操作完成之后&#xff1a; 但是下次重启之后依旧是英文&#xff1b; 2、在jmeter.…...

基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 输出方波 输出脉冲波 输出m随机序列 输出正弦波 2.算法运行软件版本 vivado2019.2 3.部分核心程序 &#xff08;完整…...

背景全文及翻译

背景 Oracle数据向MySQL同步&#xff0c;没有最新数据&#xff0c;于是在plsql手敲SQL筛选最新数据时&#xff0c;执行报错。 问题描述 通过日期字段筛选最近的数据&#xff0c;我用了类似这样的语句&#xff1a; SELECT * FROM orders WHERE order_date > 2022/01/01;我…...

JAVA地狱级笑话

为什么Java开发者总是不怕黑暗&#xff1f; 因为他们总是有null指针来照亮路。 Java程序员最讨厌的音乐是什么&#xff1f; Garbage Collection旋律&#xff0c;节奏总是让他们烦躁。 为什么Java中的HashMap很擅长社交&#xff1f; 因为它总是能快速找到key对应的朋友。 Java开…...

宝塔PHP8.1安装fileinfo拓展失败解决办法

在宝塔面板中安装PHP8.1后&#xff0c;安装fileinfo扩展一直安装不上&#xff0c;查看日志有报错&#xff0c;于是手动来安装也报错。 宝塔报错&#xff1a; 手动命令行编译安装同&#xff0c;也有报错 cd /www/server/php/81/src/ext/fileinfo/ make distclean ./configure …...

Python 魔术方法

在Python中&#xff0c;魔术方法&#xff08;Magic Methods&#xff09;或称为双下划线方法&#xff08;Dunder Methods&#xff09;&#xff0c;是一类具有特殊用途的方法&#xff0c;其名称前后都带有两个下划线&#xff08;如 __init__、__str__ 等&#xff09;。这些方法定…...

03 go语言(golang) - fmt包基本类型

fmt包 在Go语言中&#xff0c;fmt 包是一个非常重要且广泛使用的标准库包&#xff0c;它提供了格式化I/O&#xff08;输入/输出&#xff09;功能&#xff0c;类似于C语言中的 printf 和 scanf。通过这个包&#xff0c;你可以读取输入并将数据格式化输出到标准输出或其他写入器…...

Docker本地镜像发布到阿里云镜像服务的简易指南

1 阿里云容器镜像服务 阿里云容器镜像服务&#xff08;Alibaba Cloud Container Registry&#xff0c;简称ACR&#xff09;是一个为容器镜像、Helm Chart等云原生资产提供安全托管及高效分发的平台。它支持多架构容器镜像&#xff0c;包括Linux、Windows、ARM等&#xff0c;以…...

大数据学习---快速了解clickhouse数据库

ClickHouse数据库介绍 ClickHouse是一款由Yandex开发的列式数据库管理系统&#xff08;DBMS&#xff09;&#xff0c;适用于在线分析处理&#xff08;OLAP&#xff09;场景。它具有高性能、可扩展性、实时更新等特点&#xff0c;适用于处理大规模数据。 特点 列式存储&#x…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...