数据分箱:如何确定分箱的最优数量?
选择最优分箱可以考虑以下几种方法:
一、基于业务理解
- 分析业务背景:从业务角度出发,某些特征可能有自然的分组或区间划分。例如,年龄可以根据不同的人生阶段进行分箱,收入可以根据常见的收入等级划分。
- 优点:符合业务逻辑,结果易于解释和理解。
- 缺点:可能不够精确地优化模型性能。
二、基于数据分布观察
- 绘制直方图:对于连续特征,可以绘制其直方图,观察数据的分布情况。如果数据呈现明显的多峰分布,可以考虑在峰值处进行分箱。
- 例如,使用
matplotlib
库绘制直方图:
import matplotlib.pyplot as plt import pandas as pddata = pd.DataFrame({'loanAmnt': [100, 200, 300, 400, 500]}) plt.hist(data['loanAmnt'], bins=10) plt.show()
- 例如,使用
- 使用核密度估计:核密度估计可以更平滑地展示数据的分布,可以帮助确定合适的分箱点。
- 例如,使用
seaborn
库绘制核密度图:
import seaborn as sns import pandas as pddata = pd.DataFrame({'loanAmnt': [100, 200, 300, 400, 500]}) sns.kdeplot(data['loanAmnt'])
- 例如,使用
三、基于模型性能评估
- 交叉验证:使用不同数量的分箱对数据进行处理,然后在多个数据集上进行交叉验证,评估模型的性能。选择性能最佳的分箱数量。
- 示例代码:
from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression import pandas as pddata = pd.DataFrame({'loanAmnt': [100, 200, 300, 400, 500], 'target': [0, 1, 0, 1, 0]})for num_bins in range(2, 10):data['loanAmnt_bin'] = pd.qcut(data['loanAmnt'], q=num_bins)X = pd.get_dummies(data[['loanAmnt_bin']])y = data['target']model = LogisticRegression()scores = cross_val_score(model, X, y, cv=5)print(f"Number of bins: {num_bins}, Mean score: {np.mean(scores)}")
- 信息价值(Information Value,IV)和基尼系数(Gini Coefficient):在信用评分等领域,可以计算特征的信息价值或基尼系数来确定分箱的效果。通常,较高的信息价值或较低的基尼系数表示更好的分箱效果。
- 例如,假设存在一个计算信息价值的函数
calculate_information_value
:
from some_library import calculate_information_valuedata = pd.DataFrame({'loanAmnt': [100, 200, 300, 400, 500], 'target': [0, 1, 0, 1, 0]})for num_bins in range(2, 10):data['loanAmnt_bin'] = pd.qcut(data['loanAmnt'], q=num_bins)iv = calculate_information_value(data['loanAmnt_bin'], data['target'])print(f"Number of bins: {num_bins}, Information Value: {iv}")
- 例如,假设存在一个计算信息价值的函数
四、自动化方法
- 使用基于决策树的分箱方法:一些算法,如卡方分箱(ChiMerge),可以自动确定最佳的分箱数量和区间。这些方法基于统计检验来合并相似的区间,直到满足一定的停止条件。
- 例如,可以使用
pandas
和scipy.stats
库实现简单的卡方分箱:
import pandas as pd from scipy.stats import chi2_contingencydef chimerge(data, feature, target, max_bins=10):bins = pd.cut(data[feature], bins=10)while len(bins.categories) > max_bins:pvalues = []for i in range(len(bins.categories) - 1):bin1 = data[target][bins.categories[i].left <= data[feature] < bins.categories[i].right]bin2 = data[target][bins.categories[i + 1].left <= data[feature] < bins.categories[i + 1].right]contingency_table = pd.crosstab(bin1, bin2)_, pvalue, _, _ = chi2_contingency(contingency_table)pvalues.append(pvalue)min_pvalue_idx = pvalues.index(min(pvalues))if min(pvalues) >= 0.05:breakbins = pd.cut(data[feature], bins=list(bins.categories[:min_pvalue_idx]) + list(bins.categories[min_pvalue_idx + 2:]))return binsdata = pd.DataFrame({'loanAmnt': [100, 200, 300, 400, 500], 'target': [0, 1, 0, 1, 0]}) bins = chimerge(data, 'loanAmnt', 'target') data['loanAmnt_bin'] = bins
- 例如,可以使用
选择最优分箱通常需要综合考虑多个因素,包括业务需求、数据分布和模型性能。可以尝试多种方法,并根据具体情况选择最合适的分箱策略。
相关文章:
数据分箱:如何确定分箱的最优数量?
选择最优分箱可以考虑以下几种方法: 一、基于业务理解 分析业务背景:从业务角度出发,某些特征可能有自然的分组或区间划分。例如,年龄可以根据不同的人生阶段进行分箱,收入可以根据常见的收入等级划分。 优点&#x…...
机器学习核心功能:分类、回归、聚类与降维
机器学习核心功能:分类、回归、聚类与降维 机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习,它们可以进一步细化为特定的任务,如分类、回归、聚类和降维…...
Python爬虫-eBay商品排名数据
前言 本文是该专栏的第39篇,后面会持续分享python爬虫干货知识,记得关注。 本文以eBay为例,通过搜索目标”关键词“,获取相关搜索”关键词“的商品排名数据。废话不多说,具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。接下来,跟着笔者直接往下看正文详…...

LabVIEW提高开发效率技巧----图像处理加速
在现代工业和科研中,图像处理技术被广泛应用于质量检测、自动化控制、机器人导航等领域。然而,随着图像数据量的增加,传统的CPU处理方式可能难以满足实时性和高效处理的需求。LabVIEW通过结合NI Vision模块和FPGA硬件平台,可以显著…...

AcWing1027
题目重述: 题目的核心是找到一条路径的最大权值总和,但路径要从起点 (1, 1) 走到终点 (n, n)。由于两条路径分别经过不同的格子,我们可以巧妙地将问题简化为两次同时出发的路径问题。这种映射的设计让我们能够更方便地处理两条路径重叠在同一…...
23 Shell Script服务脚本
Linux 服务脚本 一、Linux 开机自动启动服务 linux开机服务原理: ①linux系统启动首先加载kernel ②初始操作系统 ③login验证程序等待用户登陆 初始化操作系统 kernel加载/sbin/init创建用户空间的第一个程序 该程序完成操作系统的初…...
三周精通FastAPI:3 查询参数
查询参数 FastAPI官网手册:https://fastapi.tiangolo.com/zh/tutorial/query-params/ 上节内容:https://skywalk.blog.csdn.net/article/details/143046422 声明的参数不是路径参数时,路径操作函数会把该参数自动解释为**查询**参数。 from…...
大语言模型学习指南:入门、应用与深入
0x00 学习路径概述 本文将学习路径划分为三个部分:入门篇、应用篇、深入篇。每个章节针对不同的学习需求,帮助你从基础知识入手,逐步掌握大语言模型(LLM)的使用、应用开发以及技术原理等内容。 学习目标 入门篇&…...

【Linux-进程间通信】匿名管道+4种情况+5种特征
匿名管道 匿名管道(Anonymous Pipes)是Unix和类Unix操作系统中的一种通信机制,用于在两个进程之间传递数据。匿名管道通常用于命令行工具之间的数据传递; 匿名管道的工作原理是创建一个临时文件,该文件被称为管道文件…...

Perl打印9x9乘法口诀
本章教程主要介绍如何用Perl打印9x9乘法口诀。 一、程序代码 1、写法① use strict; # 启用严格模式,帮助捕捉变量声明等错误 use warnings; # 启用警告,帮助发现潜在问题# 遍历 1 到 9 的数字 for my $i (1..9) {# 对于每个 $i,遍历 1…...

Android--第一个android程序
写在前边 ※安卓开发工具常用模拟器汇总Android开发者必备工具-常见Android模拟器(MuMu、夜神、蓝叠、逍遥、雷电、Genymotion...)_安卓模拟器-CSDN博客 ※一般游戏模拟器运行速度相对较快,本文选择逍遥模拟器_以下是Android Studio连接模拟器实现(先从以上博文中…...
MySQL的并行复制原理
1. 并行复制的概念 并行复制(Parallel Replication)是一种通过同时处理多个复制任务来加速数据复制的技术。它与并发复制的区别在于,并行复制更多关注的是数据块或事务之间的并行执行,而不是单纯的任务并发。在数据库主从复制中&…...

2023年五一杯数学建模C题双碳目标下低碳建筑研究求解全过程论文及程序
2023年五一杯数学建模 C题 双碳目标下低碳建筑研究 原题再现: “双碳”即碳达峰与碳中和的简称,我国力争2030年前实现碳达峰,2060年前实现碳中和。“双碳”战略倡导绿色、环保、低碳的生活方式。我国加快降低碳排放步伐,大力推进…...

信息安全工程师(57)网络安全漏洞扫描技术与应用
一、网络安全漏洞扫描技术概述 网络安全漏洞扫描技术是一种可以自动检测计算机系统和网络设备中存在的漏洞和弱点的技术。它通过使用特定的方法和工具,模拟攻击者的攻击方式,从而检测存在的漏洞和弱点。这种技术可以帮助组织及时发现并修补漏洞ÿ…...
练习题 - Scrapy爬虫框架 Spider Middleware 爬虫页中间件
在 web 爬虫开发中,Scrapy 是一个非常强大且灵活的框架,它可以帮助开发者轻松地从网页中提取数据。Scrapy 的下载器中间件(Downloader Middleware)是 Scrapy 处理下载请求和响应的一个重要组件。通过使用和编写下载器中间件,开发者可以自定义请求的处理过程,增加请求头信…...
探索C++的工具箱:双向链表容器类list(1)
引言 在C中,std::list 是一个标准库提供的容器类,属于C STL(标准模板库)。std::list 是一种独特而强大的容器,它使用双向链表结构来管理元素。无论是在处理动态数据集合,还是在需要频繁进行插入和删除操作时…...
大厂高频算法考点--单调栈
什么是单调栈: 单调栈就是借助一个栈,在仅仅使用当前栈的条件下,时间复杂度是N(n),将每个节点最有离这他最近的大于或者是小于的数据返回,将已知数组的元素放到栈里。再自我实现的代码里面我们使用数组实现…...

Unity使用Git及GitHub进行项目管理
git: 工作区,暂存区(存放临时要存放的内容),代码仓库区1.初始化 git init 此时展开隐藏项目,会出现.git文件夹 2.减小项目体积 touch .gitignore命令 创建.gitignore文件夹 gitignore文件夹的内容 gitignore中添加一下内容 # This .gitignore file should be place…...

如何将本地 Node.js 服务部署到宝塔面板:完整的部署指南
文章简介: 将本地开发的 Node.js 项目部署到线上服务器是开发者常见的工作流程之一。在这篇文章中,我将详细介绍如何将本地的 Node.js 服务通过宝塔面板(BT 面板)上线。宝塔面板是一个强大的服务器管理工具,具有简洁的…...

SpringBoot项目启动报错:命令行太长解决
文章目录 SpringBoot项目启动报错:命令行太长解决1. 第一种方法1. 第二种方法1-1 旧版本Idea1-2 新版本Idea 3. 重新启动SpringBoot项目即可解决 SpringBoot项目启动报错:命令行太长解决 报错信息: 1. 第一种方法 1. 第二种方法 找到项目…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...