当前位置: 首页 > news >正文

【高等数学】无穷级数

0. 了解

无穷级数是指将无穷多个数按照一定的规律相加起来的表达式。
打个比方,就像你有一个无穷长的梯子,每一级梯子代表一个数。把这些数一个一个加起来,就形成了无穷级数。
比如常见的等比级数$\sum_{n=0}^{\infty}ar^n$,这里a是首项,r是公比。如果$|r|<1$,这个等比级数是收敛的,也就是它的和是一个有限的数。
无穷级数的研究主要是看它是否收敛,也就是这个无穷多个数加起来会不会趋向于一个确定的值。如果收敛,就可以求出这个和;如果不收敛,就说它是发散的。
比如级数$\sum_{n=1}^{\infty}\frac1n$就是发散的,而级数$\sum_{n=0}^{\infty}\frac1{2^n}$是收敛的,它的和为$\frac1{1-\frac12}=2$

无穷级数在许多数学和工程领域中有广泛的应用,包括:泰勒级数,用于近似函数值;傅里叶级数: 用于信号处理和图像分析;概率论: 在计算期望值和方差时经常出现。


幂级数的x是可以变化的,x在收敛域内那么这个级数就是收敛的;x在收敛域外那么这个级数就是发散的。当x在收敛域内时,该幂级数可以求和函数(级数和随x变化而变化的情况)。

常数项级数就是x为某一个值的情况,敛散性是确定的。当他收敛时,和为一个确定值而非函数。

1. 常数项级数

定义

常数项级数就是无穷多个项求和,其中每一项都是常数。

公式

$\sum_{n=1}^{\infty}u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

1.1. 敛散性

1.1.1. 概念

敛散性

收敛发散
$\sum_{n=1}^{\infty}(\frac{1}{2})^{n}=\frac{1}{2}+(\frac{1}{2})^{2}+\ldots+(\frac{1}{2})^{n}+\ldots$$\sum_{n=1}^{\infty}2^{n}=2+2^{2}+\ldots+2^{n}+\ldots $

通过定义判断级数是否收敛

1. $\lim_{n\to\infty} S_n$极限存在,级数收敛

2.$\lim_{n\to\infty} S_n$极限不存在,级数发散 

1.1.2. 正项级数

 等比级数

例题1 判断级数$\sum_{n=1}^\infty(\frac12)^n=\frac12+(\frac12)^2+\ldots+(\frac12)^n+\ldots$的敛散性。

01/步骤:找到一般项u_{n}=\left ( \frac{1}{2} \right )^{n}

02/步骤:计算$S_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

$S_n=\frac12+(\frac12)^2+\ldots+(\frac12)^n$

等比数列求和公式 $S_n= a+ aq+ aq^2+ \ldots + aq^n= \frac {a( 1- q^n) }{1- q}=\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}\\=1-(\frac12)^n$

03/步骤:计算$\lim_{n\to\infty}S_{n}$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}[1-(\frac{1}{2})^{n}]\\$

$\lim_{n\to\infty}(\frac{1}{2})^{n}=\lim_{n\to\infty}\frac{1}{2^{n}}=0$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}(1-0)=1\\$

级数$\sum_{n=1}^\infty(\frac12)^n$收敛

例题2 判断级数$\sum_{n=1}^\infty2^n=2+(2)^2+\ldots+(2)^n+\ldots$的敛散性。

01/步骤:找到一般项u_{n}=\left ( 2 \right )^{n}

02/步骤:计算$S_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

$S_n=2+(2)^2+\ldots+(2)^n$

等比数列求和公式 $S_n= a+ aq+ aq^2+ \ldots + aq^n= \frac {a( 1- q^n) }{1- q}=\frac{2[1-(2)^{n}]}{1-2}\\=2^{n+1}-2$

03/步骤:计算$\lim_{n\to\infty}S_{n}$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}[2^{n+1}-2]=\infty\\$

级数$\sum_{n=1}^\infty(2)^n$发散

p级数 

例题3 判断级数$\sum_{n=1}^{\infty}ln(1+\frac1{n^2})$的敛散性。

$u_n=ln(1+\frac1{n^2})$

$u_n=ln(1+\frac1{n^2})\sim\frac1{n^2}$

p-级数$\sum_{n=1}^{\infty}\frac1{n^2}$收敛

因此级数$\sum_{n=1}^\infty ln(1+\frac1{n^2})$收敛

例题4 判断级数$\sum_{n=1}^\infty2^nsin\frac1{3^n}$的敛散性。

$\sum_{n=1}^{\infty}2^{n}sin\frac{1}{3^{n}}$     $u_{n}=2^{n}sin\frac{1}{3^{n}}$

n\to\infty$\frac{1}{3^{n}}\to0, sin\frac{1}{3^{n}}\sim\frac{1}{3^{n}},u_{n}=2^{n}sin\frac{1}{3^{n}}\sim2^{n}\frac{1}{3^{n}}=(\frac{2}{3})^{n}$

等比级数$\sum_{n=1}^{\infty} (\frac{2}{3})^{n} $收敛,因此$\sum_{n=1}^{\infty}2^{n}sin\frac{1}{3^{n}}$收敛

含有a_n,n!

例题5 判断级数$\sum_{n=1}^\infty\frac{2^nn!}{n^n}$的敛散性。

01/步骤:写出u_nu_{n+1}

$u_n=\frac{2^nn!}{n^n}\quad u_{n+1}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}$

02/步骤:求比值$\frac{u_{n+1}}{u_n}$

$\frac{u_{n+1}}{u_n}=\frac{\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{2^nn!}{n^n}}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^n}{2^nn!}=\frac{2^n\cdot2(n+1)n!}{(n+1)^n(n+1)}\cdot\frac{n^n}{2^nn!}=\frac{2n^n}{(n+1)^n}$

03/步骤:算极限$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho $

$\lim_{n\to\infty}\frac{u_{n+1}}{u_{n}}=\lim_{n\to\infty}\frac{2n^{n}}{(n+1)^{n}}=\lim_{n\to\infty}\frac{2}{(1+\frac{1}{n})^{n}}=\frac{2}{e}<1$

04/步骤:判断敛散性

因此原级数$\sum_{n=1}^\infty\frac{2^nn!}{n^n}$收敛。

例题6 判断级数$\sum_{n=1}^{\infty}\frac{n!}{10^n}$的敛散性。

$u_n=\frac{n!}{10^n}\quad u_{n+1}=\frac{(n+1)!}{10^{n+1}}$

相关文章:

【高等数学】无穷级数

0. 了解 无穷级数是指将无穷多个数按照一定的规律相加起来的表达式。 打个比方,就像你有一个无穷长的梯子,每一级梯子代表一个数。把这些数一个一个加起来,就形成了无穷级数。 比如常见的等比级数,这里是首项,是公比。如果,这个等比级数是收敛的,也就是它的和是一个有限…...

计算机网络——无连接传输UDP

UDP用于流媒体应用和事务性应用&#xff08;一次往返搞定的应用&#xff09;...

DS几大常见排序讲解和实现(下)(15)

文章目录 前言一、快排的思想二、Hoare版基本思路代码实现 三、挖坑法基本思路代码实现 四、双指针法基本思想代码实现 五、三数取中六、小区间优化七、三路划分八、自省排序总结 前言 其实下篇就单独讲个快速排序   你可能会想这是什么神通&#xff0c;竟然能单独开一篇来讲…...

电脑视频剪辑大比拼,谁更胜一筹?

随着短视频的火爆&#xff0c;越来越多的人开始尝试自己动手制作视频&#xff0c;无论是记录生活点滴还是创作个性短片&#xff0c;一款好用的视频剪辑软件是必不可少的。今天&#xff0c;我们就从短视频运营的角度&#xff0c;来聊聊几款热门的电脑视频剪辑软件&#xff0c;看…...

计算机毕业设计 基于Web的景区管理系统的设计与实现 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…...

计算生物学与生物信息学漫谈-2-测序深度/读长质量和Fasta处理

上一篇文章中我们介绍了测序技术的由来与发展&#xff0c;那么在介绍第三代测序的时候&#xff0c;我们提到了关于测序深度和读长的问题&#xff0c;那么本篇文章就详解介绍一下。 计算生物学与生物信息学漫谈-1-测序一路走来-CSDN博客 目录 1.测序深度SEQUENCING DEPTH &…...

基于SSM+微信小程序的电子点餐管理系统(点餐1)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的电子点餐管理系统实现了管理员及用户。管理员实现了首页、个人中心、餐品分类管理、特色餐品管理、订单信息管理、用户管理、特价餐品管理、活动订单管理、系统管理。…...

IO进程---day5

1、使用有名管道实现两个进程之间的相互通信 //管道文件 #include<myhead.h> int main(int argc, const char *argv[]) {//创建有名管道文件1if(mkfifo("./pipe1",0664)-1){perror("创建管道文件失败");return 0;}if(mkfifo("./pipe2",066…...

ROS理论与实践学习笔记——5 ROS机器人系统仿真之URDF(Unified Robot Description Format)语法详解

URDF 文件是一个标准的 XML 文件格式&#xff0c;用于在 ROS 中描述机器人模型的结构。URDF 通过预定义的一系列标签&#xff0c;简洁地表达机器人的组成和运动关系。虽然机器人模型可能非常复杂&#xff0c;但在 URDF 中可以主要简化为两个核心部分&#xff1a; 连杆&#xff…...

常见SQL注入攻击示例与原理及其防御措施

SQL 注入&#xff08;SQL Injection&#xff09;是一种代码注入技术&#xff0c;用于攻击数据驱动的应用程序&#xff0c;主要通过在输入字段或 URL 查询参数中插入恶意 SQL 语句来实现。攻击者利用应用程序对用户输入数据的未充分验证或过滤&#xff0c;将恶意 SQL 语句注入到…...

Node.js 中的 WebSocket 底层实现

WebSockets 是一种网络通信协议&#xff0c;可实现双向客户端-服务器通信。 WebSockets 通常用于需要即时更新的应用程序&#xff0c;使用 HTTP 之上的持久双工通道来支持实时交互&#xff0c;而无需持续进行连接协商。服务器推送是 WebSockets 的众多常见用例之一。 本文首先…...

MySQl数据库的基本操作

1.1创建数据库 使用CREATE DATABASE语句可以轻松创建MySQL数据库&#xff0c;语法如下&#xff1a; CREATE DATABASE 数据库名; 例&#xff1a;创建fruitsales数据库 CREATE DATABASE fruitsales;1.2 查看数据库 使用SHOW语句查看当前服务器下所有已经存在的数据库 SHOW DAT…...

Egg.js 项目的合理 ESLint 配置文件模板

Egg.js 项目的合理 ESLint 配置文件模板 安装依赖 npm install eslint babel/eslint-parser eslint-plugin-import eslint-plugin-promise eslint-plugin-node --save-dev extends: 扩展了 eslint-config-egg 以及其他一些常用的插件配置。 parser: 使用 babel/eslint-parse…...

算法专题七: 分治归并

目录 1. 排序数组2. 交易逆序对的总数3. 计算右侧小于当前元素的个数4. 翻转对 1. 排序数组 算法思路: 本道题使用归并的思路进行排序, 先讲数组分为左右两个区间, 然后合并两个有序数组. class Solution {vector<int> tmp; public:vector<int> sortArray(vector&…...

一个基于vue功能强大的表格组件--vxe-table的二次封装

基础使用 一个基于 vue 的 PC 端表格组件&#xff0c;支持增删改查、虚拟滚动、懒加载、快捷菜单、数据校验、树形结构、打印导出、表单渲染、数据分页、虚拟列表、模态窗口、自定义模板、渲染器、贼灵活的配置项、扩展接口等… <vxe-grid v-bind"gridOptions1"…...

CSS网页布局(重塑网页布局)

一、实现两列布局 许多网站有一些特点&#xff0c;如页面顶部放置一个大的导航或广告条&#xff0c;右侧是链接或图片&#xff0c;左侧放置主要内容&#xff0c;页面底部放置版权信息等。 一般情况&#xff0c;此类网页布局的两列都有固定的宽度&#xff0c;而且从内容上很容易…...

计算机网络:数据链路层 —— 以太网(Ethernet)

文章目录 局域网局域网的主要特征 以太网以太网的发展100BASE-T 以太网物理层标准 吉比特以太网载波延伸物理层标准 10吉比特以太网汇聚层交换机物理层标准 40/100吉比特以太网传输媒体 局域网 局域网&#xff08;Local Area Network, LAN&#xff09;是一种计算机网络&#x…...

考研前所学c语言02(2024/10/16)

1.一个十进制的数转化为二进制的就是不断除二取余&#xff0c;得到的余数从下到上取 比如123&#xff1a; 结果为&#xff1a; 同理其他的十进制转八进制&#xff0c;十六进制就除八&#xff0c;除十六即可 再比如123转十六进制&#xff1a; 因为余数是11&#xff0c;十六进…...

R语言绘图——坐标轴及图例

掌握坐标轴与图例的设置与调整&#xff0c;对于提升数据可视化的清晰度和可读性至关重要。通过这些工具&#xff0c;可以有效地传达数据背后的故事&#xff0c;提高图表的表现力。 0x01 坐标轴 一、坐标轴的设置 1、修改坐标轴的标签 在ggplot2中&#xff0c;坐标轴是根据数…...

JDK中socket源码解析

目录 1、Java.net包 1. Socket通信相关类 2. URL和URI处理类 3. 网络地址和主机名解析类 4. 代理和认证相关类 5. 网络缓存和Cookie管理类 6. 其他网络相关工具类 2、什么是socket&#xff1f; 3、JDK中socket核心Api 4、核心源码 1、核心方法 2、本地方法 3、lin…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...