当前位置: 首页 > news >正文

线性代数 向量

一、定义

        几何定义:向量是一个有方向和大小的量,通常用箭头表示。向量的起点称为原点,终点称为向量的端点。

        代数定义:向量是一个有序的数组,通常表示为列向量或行向量。

行向量就是 1*n的形式(行展开)

列向量就是 n*1的形式(列展开)

二、运算

        加法、数乘、点积和叉积(向量维度必须相同,若不相同,可以补零)

1、加法

        向量加法是将两个向量的对应分量相加,得到一个新的向量(A_1 +B_1 = C_1)。

2、数乘

        向量数乘是将一个向量的每个分量乘以一个标量,得到一个新的向量(KA =B= KA_1 ,KA_2 ... KA_n)。

3、点积

        向量点积(内积)是将两个向量的对应分量相乘,然后将结果相加,得到一个标量

u⋅v=u_{1}v_{1}+u_{2}v_{2}+⋯+u_{n}v_{n}  。

例如:存在两个向量,求相加、分别乘2、两者相乘:

解:

注意:加减法、数乘都是得到向量结果,向量相乘得到标量(准确数值)。

三、特征值与特征向量

         A 是一个 n×n 的方阵。如果存在一个非零列向量 v 和一个标量 λ,使得: Av=λv。

那么λ 称为矩阵 A的特征值,v 称为对应于特征值 λ 的特征向量(λ可以为0,而v不能为0,并且v是列向量 )。

        根据  Av=λv 推 (A-λE)v=0 (λ  是标量,转化为矩阵才能进行运算,则需要乘以单位矩阵),

v不可以为零,那么  A-λE  = 0 

例如:

解:求特征值 λ :

        A-λE = 0 =>  = (-1- λ)(3-λ)(2-λ) - (-4) * (2-λ) =  (2-λ)((-1- λ)(3-λ)+4) = (2-λ)((-1- λ)(3-λ) +4) = (2-λ)(λ*λ -3λ +λ +4) = (2-λ)(λ-1)(λ-1) =0

那么 λ 的值为 2,1

        求特征向量 (A-λE)v=0 ,则需要 (A-λE) 的矩阵来得到特征向量

在 λ = 2 的情况下:

 = ,初等变化 (第一行和第三行交换;第二行减去第三行;第二行减去第一行;第二行与第三行交换;第二行 乘 4加上第一行, 第二行除以4)最终结果为 

,令为A1

根据 (A-λE)v=0 得到 A1 * v = 0 ,则 等价于   *  =  =>

1*a + 0*b +0*c = 0   ;        0*a + 1*b +0*c = 0 ;        0*a + 0*b +0*c = 0 

综合可得,a=b=0,c 可以是任何数值。即 v = 

在 λ = 1 的情况下:

  =  ,初等变化 后为 与上面类型一致,则结果还是a=b=0,c 可以是任何数值。

四、向量的模

        向量 v 的模记作 ∥v∥,计算公式为:

五,向量内积

        对于两个 n 维向量 a=(a1,a2,…,an) 和 b=(b1,b2,…,bn),它们的内积(点积)表示为 a⋅b,计算公式为: a *  b=a_{1}b_{1}+a_{2}b_{2}+⋯+a_{n}b_{n}

        在几何上,内积也可以通过向量的模和它们之间的夹角来表示。具体来说,如果 θ 是向量 a 和 b 之间的夹角,那么内积可以表示为: a * b=||a|| * ||b|| *cos⁡(θ)

 例如:有两个三维向量 a 和 b :a=(2,3,1),b=(4,−1,2),

        其内积为 a⋅b=(2⋅4)+(3⋅−1)+(1⋅2)=8-3+2=7

        a⋅b=∥a∥∥b∥cos⁡(θ) =>  cos⁡(θ) =   a⋅b / ∥a∥∥b∥ = 7/  (14)^{1/2}   / (21)^{1/2} =  0.408

六、根据模扩展 - 余弦相似度

        cos= ab / (|a|*|b|)

        使用余弦相似度计算两段文本的相似度

将语句拆分为多个字或词,之后将两个语句的所有内容放入集合,按照词在集合中的次数进行整理得到向量(集合中的词位置就是向量的下标),两个向量求余弦值。

例如;

句子A:这只皮靴号码大了。那只号码合适。

句子B:这只皮靴号码不小,那只更合适。

拆分句子得到:

listA=[这, 只, 皮靴, 号码, 大, 了, 那, 只, 号码, 合适]

listB=[这, 只, 皮靴, 号码, 不, 小, 那, 只, 更, 合适]

放入集合

set=[号码, 合适, 那, 更, 了, 大, 皮靴, 这, 只, 不, 小]

进行排序加次数计算

freqListA=[2, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0]

freqListB=[1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1]

套用余弦函数计算相似度

cos = 10 /12.94  = 0.77

import math
# 输入两个语句
listA1 =input('请输入第一个句子:')
listB1 =input('请输入第二个句子:')
print(f'你输入的第一个句子为:{listA1}' )
print(f'你输入的第一个句子为:{listB1}' )#拆分后排序
listA =list(listA1)
listB =list(listB1)
listA.sort()
listB.sort()#将拆分内容放入集合,去掉重复后转成列表获取下标
C =set(listA+listB)
listC=list(C)
listC.sort()#创建两个空列表
freqlsitA=[]
freqlsitB=[]#根据两个列表的数据并集 求向量列表的长度
for i in range(len(listC)):freqlsitA.append(str(f'{i}'))freqlsitB.append(str(f'{i}'))#根据数据并集内容判断是否存在,若存在则计数放在与集合同位置的地方,若不存在,则将同位置修改为0
for i,j in enumerate(listC):if j in listA:freqlsitA[listC.index(j)] = listA.count(j)else:freqlsitA[listC.index(j)] = 0if j in listB:freqlsitB[listC.index(j)] = listB.count(j)else:freqlsitB[listC.index(j)] = 0#创建三个变量用来存放数学计算所需要的数据内容
a=0
b=0
c=0
for i in range(len(freqlsitA)):a += freqlsitA[i]*freqlsitB[i]b +=freqlsitA[i] * freqlsitA[i]c +=freqlsitB[i] * freqlsitB[i]#余弦值等于相乘累计 处于平方累计之后平方根的相乘
COS = a /(math.sqrt(b) *math.sqrt(c))if COS >0.65:print('这两个句子相似')
else:print("这两个句子不相似")

相关文章:

线性代数 向量

一、定义 几何定义:向量是一个有方向和大小的量,通常用箭头表示。向量的起点称为原点,终点称为向量的端点。 代数定义:向量是一个有序的数组,通常表示为列向量或行向量。 行向量就是 1*n的形式(行展开&…...

go中阶乘实现时递归及迭代方式的比较

package mainimport ("fmt""time""math/big" )// 使用递归和 big.Int 计算阶乘 func FactorialRecursive(n *big.Int) *big.Int {if n.Cmp(big.NewInt(0)) 0 {return big.NewInt(1)}return new(big.Int).Mul(n, FactorialRecursive(new(big.Int…...

Jupyter notebook中更改字体大小

文章目录 方法一:局部修改方法二:全局修改 Jupyter notebook提供了一个非常方便的跨平台交互代码编译环境,但是单元格的内的代码字体往往显示较小,不利于观看。本人查了很多方法来调整字体,后来发现既不需要更改jupyte…...

关于Ubuntu服务器的时间同步设置以及Linux什么时候开始使用swap虚拟内存

一、关于Ubuntu服务器的时间同步设置 首先我们检查一下服务器的时区设置和当前时间值,获取/etc/timezone 配置以及使用date命令查看当前时间。 rootiZ2ze7n2ynw18p6bs92fziZ:~# cat /etc/timezone Asia/Shanghai rootiZ2ze7n2ynw18p6bs92fziZ:~# date Wed Dec 21 …...

Java Stream API 详解

Java Stream API 详解 1. 什么是 Stream API? Stream API 是 Java 8 引入的一种用于处理集合(如数组、列表)的强大工具。它提供了一种声明性方式处理数据,可以简化代码并提高可读性。Stream 不是数据结构,它只是一种…...

一文了解大模型中的SDK和API

大白话聊SDK和API-知乎 1.智谱AI的SDK和API 以智谱AI为例,智谱AI的SDK是名为zhipuai的Python包,其中包含了用于访问API的接口(如api-key)。在这个框架中,API是SDK的一部分,用于实现与智谱AI服务的交互。 …...

element plus的el-select分页

摘要&#xff1a; el-select的数据比较多的时候&#xff0c;必须要分页&#xff0c;处理方案有全部数据回来&#xff0c;或者添加搜索功能&#xff0c;但是就有个问题就是编辑的时候回显问题&#xff0c;必须要保证select的数据有对应的id与name匹配回显&#xff01; <el-fo…...

STM32CubeMX【串口收发USART】

第一步&#xff0c;配置cubemx 配置好点右上角生成 第二步&#xff0c;串口方式 阻塞式发送 英文、中文正常、浮点有口 /* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();//配置完自动生成的 发送到串口助手上 while (1){/* USER CODE…...

【学术会议投稿】Java Web开发实战:从零到一构建动态网站

【会后3-4个月检索|IEEE出版】第五届人工智能与计算机工程国际学术会议&#xff08;ICAICE 2024&#xff09;_艾思科蓝_学术一站式服务平台 更多学术会议请看&#xff1a; https://ais.cn/u/nuyAF3 目录 引言 一、Java Web开发基础 1. Java Web开发简介 2. 开发环境搭建 …...

[Unity]内存优化

参考&#xff1a; Unity 内存优化 | 新诸子Unity内存优化&#xff08;来自uwa&#xff09; - weigang - 博客园Unity游戏内存优化——以TileMatch为例https://github.com/wechat-miniprogram/minigame-unity-webgl-transform/blob/main/Design/OptimizationMemory.mdunity内存…...

FreeRTOS工程创建,创建多任务程序,基于汇编对ARM架构的简单理解

FreeRTOS工程创建 下载STM32CubeMX尽量找网盘下载&#xff08;只是建议&#xff0c;没有说官网不行&#xff09; 1.创建 STM32CubeMX 工程 &#xff08;1&#xff09;双击运行 STM32CubeMX&#xff0c;在首页面选择“Access to MCU Selector”&#xff0c;如下图所示&#xff1…...

C++STL--------list

文章目录 一、list链表的使用1、迭代器2、头插、头删3、insert任意位置插入4、erase任意位置删除5、push_back 和 pop_back()6、emplace_back尾插7、swap交换链表8、reverse逆置9、merge归并10、unique去重11、remove删除指定的值12、splice把一个链表的结点转移个另一个链表13…...

M1 Mac打开Jupyter notebook

当我成功安装了Jupyter之后&#xff0c;发现无法通过 jupyter notebook 开始工作。 最初的问题是 zsh command not found 该问题是个路径问题&#xff0c;通过添加PATH环境变量就行了&#xff0c;设置环境变量时需要注意&#xff0c;zshrc和bash_profile中都可以设置&…...

docker 仓库之harbor详解

Harbor 是一个开源的企业级容器镜像仓库&#xff0c;由 VMware 提供。它基于 Docker 分布式应用程序框架构建&#xff0c;旨在解决企业对容器镜像存储、安全性和可管理性的需求。Harbor 提供了丰富的功能&#xff0c;包括用户权限管理、镜像复制、审计日志、漏洞扫描等&#xf…...

【环境变量】windons的Path

在 Windows 操作系统中&#xff0c;“Path” 是一个重要的环境变量&#xff0c;它定义了操作系统在执行命令时搜索可执行文件的目录。简而言之&#xff0c;当你在命令行&#xff08;例如 cmd 或 PowerShell&#xff09;中输入一个命令时&#xff0c;Windows 会查看 “Path” 环…...

go语言里的切片

package mainimport "fmt"func main() {// 创建一个长度为3&#xff0c;容量为5的整数切片var numbers make([]int, 3, 8)// 打印初始状态printSlice(numbers) // 输出: len3 cap5 slice[0 0 0]// 向切片添加元素numbers append(numbers, 1, 2)// 再次打印&#xf…...

革新你的智能体验:AIStarter 3.1.1正式版现已上线【安全认证】ai应用市场,数字人,ai绘画,ai视频,大模型,工作流因有尽有

在这个日新月异的技术时代里&#xff0c;人工智能&#xff08;AI&#xff09;正以前所未有的速度改变着我们的生活与工作方式。作为行业内的先锋之一&#xff0c;我们非常高兴地宣布&#xff1a;经过团队不懈努力以及严格的测试与优化后&#xff0c;AIStarter 3.1.1新版现已震撼…...

【练习17】数组中的最长连续子序列

数组中的最长连续子序列_牛客题霸_牛客网 (nowcoder.com) 题目分析&#xff1a;排序双指针 排序后&#xff0c;判断是否连续&#xff1a;后一个数-前一个数1 排序后&#xff0c;判断是否重复&#xff1a;后一个数-前一个数0 public class Solution {public int MLS (int[] arr)…...

2024 最适合 Web 开发者的 9 款 Chrome 扩展

随着 2024 年的进展&#xff0c;Chrome 扩展程序已成为 Web 开发人员工具包中不可或缺的一部分&#xff0c;在浏览器中提供强大的功能。在这篇文章中&#xff0c;我们将探讨今年在 Web 开发社区掀起波澜的 9 大 Chrome 扩展程序。 1.Lighthouse https://chromewebstore.google…...

React综合指南(二)

https://activity.csdn.net/creatActivity?id10787 #1024程序员节&#xff5c;征文# 21、 React中的状态是什么&#xff1f;它是如何使用的&#xff1f;&#xff1f; 状态是 React 组件的核心&#xff0c;是数据的来源&#xff0c;必须尽可能简单。基本上状态是确定组件呈现…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...