当前位置: 首页 > news >正文

Alpha-CLIP: A CLIP Model Focusing on Wherever You Want CVPR 2024

在原始的接受RGB三通道输入的CLIP模型的上额外增加了一个alpha通道。在千万量级的RGBA-region的图像文本对上进行训练后,Alpha-CLIP可以在保证CLIP原始感知能力的前提下,关注到任意指定区域。

GitHub - SunzeY/AlphaCLIP: [CVPR 2024] Alpha-CLIP: A CLIP Model Focusing on Wherever You Want

CLIP作为目前最流行的视觉基座模型被广泛使用。它的应用场景包括但不限于:

1.与LLM大语言模型结合成为视觉多模态大模型。

2.作为图像生成(Stable Diffusion)、点云生成(Point-E)的condition model, 实现image-to-3D。

3.用于指导NeRF的优化方向从而实现text-to-3D。

4.本身用于开放类别的识别和检测。

然而CLIP必须以整张图片作为输入并进行特征提取,无法关注到指定的任意区域。然而,自然的2D图片中往往包含不同的物体,part和thing。如果能由用户或检测模型指定需要关注的区域,在图像编码的过程就确定需要关注的对象,将会提升CLIP模型的可控制性和区域检测能力。

为了获取以区域为中心的 CLIP 特征,传统的方法如下图所示:

①:将感兴趣的区域裁剪到不同的patch

②:或将Mask应用于图像、特征和注意力掩码的不相关部分来排除不相关的区域。

这两种方法会破坏(裁剪)并省略(在掩蔽中)上下文信息,然而上下文信息对于精确的图像理解和推理至关重要。

③:在馈送到 CLIP 的图像上用圆圈或掩码轮廓突出感兴趣的区域。

尽管用户友好的,但它改变了图像的原始内容,这将导致不良识别和生成结果。

为了在不损害原始图像的情况下实现区域焦点,我们提出了Alpha-CLIP,它通过额外的alpha通道输入合并感兴趣的区域来改进CLIP[43]。除了 RGB 通道,引入的 alpha 通道使 Alpha-CLIP 能够专注于指定区域,同时保持对上下文信息的认识。在用CLIP[43]模型初始化时,Alpha-CLIP的训练仍然需要大量的区域-文本配对集合数据。通过利用分段任意模型(SAM)和多模态大型模型进行图像字幕,如BLIP-2[28],我们开发了一个有效的管道来生成数百万个易于转换为RGBA-文本数据的区域-文本对。在使用区域-文本对和图像-文本对的混合进行训练后,Alpha-CLIP可以专注于特定区域,同时保持CLIP的视觉识别精度。

相关文章:

Alpha-CLIP: A CLIP Model Focusing on Wherever You Want CVPR 2024

在原始的接受RGB三通道输入的CLIP模型的上额外增加了一个alpha通道。在千万量级的RGBA-region的图像文本对上进行训练后,Alpha-CLIP可以在保证CLIP原始感知能力的前提下,关注到任意指定区域。 GitHub - SunzeY/AlphaCLIP: [CVPR 2024] Alpha-CLIP: A CLI…...

Golang | Leetcode Golang题解之第495题提莫攻击

题目: 题解: func findPoisonedDuration(timeSeries []int, duration int) (ans int) {expired : 0for _, t : range timeSeries {if t > expired {ans duration} else {ans t duration - expired}expired t duration}return }...

04 go语言(golang) - 变量和赋值过程

变量 在Go语言中,变量的定义和初始化是编程的基础部分。Go提供了多种方式来声明和初始化变量,以适应不同的使用场景。 基本变量声明 使用var关键字: 使用var关键字可以在函数内部或外部声明变量。如果在函数外部声明,该变量为全…...

语言/图像/视频模型一网打尽!BigModel大模型开放平台助力开发者轻松打造AI新应用!

2024年8⽉28⽇,在ACM SIGKDD(国际数据挖掘与知识发现⼤会,KDD)上会议现场,智谱AI重磅推出了新⼀代全⾃研基座⼤模型 GLM-4-Plus、图像/视频理解模型 GLM-4V-Plus 和⽂⽣图模型 CogView3-Plus。这些新模型,已…...

Go语言Linux环境搭建以编写第一个Go程序

目录 文章目录 目录Go语言入门1、说明2、CentOS7安装Go3、编写第一个程序3.1、编写程序3.2、运行程序3.3、生成二进制文件4、编写第一个web程序4.1、编写代码4.2、运行程序4.3、测试访问4.4、生成二进制配置Vim-go语法高亮1)、下载和设置Vundle.vim(vim安装插件的工具)2)、…...

使用 Go 构建一个最小的 API 应用

最近有项目要使用 Go 开发,作为一个. NET Core 选手,准备先撸一个包含 CRUD 的最小 MVP 项目练手。 要创建一个 TODO 应用,会创建下面这些接口: APIDescriptionRequest bodyResponse bodyGET /todoitemsGet all to-do itemsNone…...

MySQL 日常维护指南:常见任务、频率及问题解决

MySQL 作为一种广泛使用的开源关系型数据库,随着数据量和应用复杂性的增加,定期的数据库维护对于保持系统高效运行至关重要。通过合理的日常维护,数据库管理员能够确保 MySQL 数据库的稳定性、性能以及数据的完整性。本文将介绍 MySQL 的常见…...

oracle ORA-24920:列大小对于客户机过大

问题描述 在一次读取某个视图数据过程中,当数据读取到x条时,报错ORA-24920:列大小对于客户机过大。 通过查询资料得知,oracle 数据库升级到了12c,VARCHAR2的容量也从4000升级到了32767。 所以猜测某个字段的长度超过4…...

使用 Docker compose 部署 Nacos(达梦数据库)

1. 制作镜像的源码地址 https://github.com/wangsilingwsl/nacos-dm.git 参考的开源项目:https://github.com/jeecgboot/JeecgBoot/tree/master/jeecg-boot/jeecg-server-cloud/jeecg-cloud-nacos (master分支;tag:v3.7.1&#…...

人工智能 | 阿里通义千问大模型

简介 通义千问系列模型为阿里云研发的大语言模型。千问模型基于 Transformer 架构,在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在预训练模型的基础之上&…...

Windows环境下Qt Creator调试模式下qDebug输出中文乱码问题

尝试修改系统的区域设置的方法: 可以修复问题。但会出现其它问题: 比如某些软件打不开,或者一些软件界面的中文显示乱码! 暂时没有找到其它更好的办法。...

java防止表单重复提交的注解@RepeatSubmit

代码解释 RepeatSubmit 是一个自定义注解,通常用于防止表单重复提交。这个注解可以应用于控制器方法上,以确保同一个请求在一定时间内不会被多次提交。以下是一些常见的参数和用法: value: 注解的名称或描述。 interval: 两次请求之间的最小间…...

HTTP快速入门

HTTP报文结构 HTTP 协议主要由三大部分组成: ● 起始行(start line):描述请求或响应的基本信息; ● 头部字段(header):使用 key-value 形式更详细地说明报文; ● 消息正…...

Nacos简介

Nacos是一个开源的动态服务发现、配置管理和服务管理平台,由阿里巴巴集团开发并开源。它提供了服务注册与发现、配置管理、动态DNS服务、服务健康监测、权重和流量管理等核心特性,非常适合构建云原生应用和微服务架构。 Nacos的核心功能包括&#xff1a…...

基于深度学习的稳健的模型推理与不确定性建模

基于深度学习的稳健模型推理与不确定性建模,是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功,如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理,并能够量化这种不确定性,成为关键问题。稳健性与不确…...

C语言 sizeof 的介绍,以及sizeof计算数组名、 数组首地址、数组的元素之间的区别

一、sizeof 介绍 sizeof 是 C 语言中的一个运算符,用于计算数据类型或变量在内存中占用的字节数。用于计算数据类型或变量所占的内存大小,以字节为单位。它可以在编译时计算其操作数的大小,并返回一个 size_t 类型的值。它可以帮助了解不同类…...

深入理解Oracle闪回技术

引言: Oracle 闪回(Flashback)是一组强大的功能,用于恢复数据库中的数据或对象到过去的某个时间点或状态,而无需进行传统的基于备份和恢复的操作。 Oracle 闪回的主要类型 1. 闪回查询(Flashback Query&…...

Go 语言初探

Google 公司有一个传统,允许员工利用 20% 的工作时间开发自己的实验项目。2007 年 9月,UTF-8 的设计者之一 Rob Pike(罗布.皮克)在 Google 的分布式编译平台上进行 C++ 编译时,与同事 Robert Griesemer (罗布.格里泽默)在漫长的等待中讨论了编程语言面临的主要问题。他们一…...

使用ROS资源编排一键部署LNMP建站环境,手动整理教程

LNMP是目前主流的网站服务器架构之一,适合运行大型和高并发的网站应用,例如电子商务网站、社交网络、内容管理系统等。LNMP分别代表Linux、Nginx、MySQL和PHP。本文阿里云服务器网aliyunfuwuqi.com介绍如何使用阿里云资源编排服务(ROS&#x…...

猎板PCB镍钯金工艺你了解多少?

PCB镍钯金工艺,也称为ENEPIG(Electroless Nickel Electroless PALLADIum Gold)工艺,是一种在PCB表面处理中使用的先进工艺。这种工艺通过在PCB线路板上形成一层镍钯合金层,有效地提高了线路板的耐氧化性、耐腐蚀性和可…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...