当前位置: 首页 > news >正文

人工智能 | 阿里通义千问大模型

简介

通义千问系列模型为阿里云研发的大语言模型。千问模型基于 Transformer 架构,在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在预训练模型的基础之上,使用对齐机制打造了模型的 chat 版本。其中千问-1.8B 是 18 亿参数规模的模型,千问-7B 是 70 亿参数规模的模型,千问-14B 是 140 亿参数规模的模型,千问-72B 是 720 亿参数规模的模型。

Qwen1.5

Qwen1.5 是 Qwen 开源系列的下一个版本。与之前的版本相比,Qwen1.5 显著提升了聊天模型与人类偏好的一致性,改善了它们的多语言能力,并具备了强大的链接外部系统能力。DashScope 上提供 API 服务的是新版本 qwen 模型的 chat 版本,在 chat 能力上大幅提升,即便在英文的 MT-Bench 上,Qwen1.5-Chat 系列也取得了优秀的性能。

Qwen2

Qwen2 参数范围包括 0.5B 到 72B,包括 MOE 模型。Qwen2 在一系列针对语言理解、语言生成、多语言能力、编码、数学、推理等的基准测试中总体上超越了大多数开源模型,并表现出与专有模型的竞争力。Qwen2 增⼤了上下⽂⻓度⽀持,最⾼达到 128K tokens(Qwen2-72B-Instruct),能够处理大量输入

千问 2 性能

文生文本地部署 ollama

Qwen2-72B-Instruct-demo 在线体验

Qwen2-VL ModelScope

Qwen2-VL 可以处理任意图像分辨率,将它们映射到动态数量的视觉标记中,提供更接近人类的视觉处理体验

Qwen2-VL 模型特点

  • 读懂不同分辨率和不同长宽比的图片:Qwen2-VL 在 MathVista、DocVQA、RealWorldQA、MTVQA 等视觉理解基准测试中取得了全球领先的表现。
  • 理解 20 分钟以上的长视频:Qwen2-VL 可理解长视频,并将其用于基于视频的问答、对话和内容创作等应用中。
  • 能够操作手机和机器人的视觉智能体:借助复杂推理和决策的能力,Qwen2-VL 可集成到手机、机器人等设备,根据视觉环境和文字指令进行自动操作。
  • 多语言支持:为了服务全球用户,除英语和中文外,Qwen2-VL 现在还支持理解图像中的多语言文本,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。

本地部署示例

本地处理视频分析

Qwen2-VL ModelScope 在线体验

langchain 调用阿里云 api

from langchain_community.chat_models import ChatTongyi
from langchain_core.messages import HumanMessagechatLLM = ChatTongyi(model_name="qwen-vl-max")
image_message = {"image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png",
}
text_message = {"text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
chatLLM.invoke([message])

token 消耗统计

content=[{'text': '图中是一位身穿黄色衣服的女子站在床边喂一个男人喝药。女人身穿一身黄色旗袍,上面绣着精美的花纹。男人躺在床上似乎很虚弱的样子。'}] response_metadata={'model_name': 'qwen-vl-max', 'finish_reason': 'stop', 'request_id': '777814e2-873c-93c8-a280-eea5e91f59f1', 'token_usage': {'input_tokens': 335, 'output_tokens': 39, 'image_tokens': 299}} id='run-7708852a-7069-4940-9b25-9bcda0e99e10-0'

代码调用 transformers + modelscope

from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_downloadfrom utils import debugmodel_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")
# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(model_dir, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_dir)def test_image():# Imageurl = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"image = Image.open(requests.get(url, stream=True).raw)conversation = [{"role": "user","content": [{"type": "image",},{"type": "text", "text": "Describe this image."},],}]# Preprocess the inputstext_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")inputs = inputs.to("cuda")# Inference: Generation of the outputoutput_ids = model.generate(**inputs, max_new_tokens=128)generated_ids = [output_ids[len(input_ids):]for input_ids, output_ids in zip(inputs.input_ids, output_ids)]output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)debug(output_text)

总结

  • 功能相对齐全,文本、音频、图片、视频都比较开放
  • 在线服务完善 阿里云、魔搭、海外平台集成
  • 开放性高,开源,可私有部署

在这里插入图片描述

推荐学习

【霍格沃兹测试开发】7天软件测试快速入门带你从零基础/转行/小白/就业/测试用例设计实战

【霍格沃兹测试开发】最新版!Web 自动化测试从入门到精通/ 电子商务产品实战/Selenium (上集)

【霍格沃兹测试开发】最新版!Web 自动化测试从入门到精通/ 电子商务产品实战/Selenium (下集)

【霍格沃兹测试开发】明星讲师精心打造最新Python 教程软件测试开发从业者必学(上集)

【霍格沃兹测试开发】明星讲师精心打造最新Python 教程软件测试开发从业者必学(下集)

【霍格沃兹测试开发】精品课合集/ 自动化测试/ 性能测试/ 精准测试/ 测试左移/ 测试右移/ 人工智能测试

【霍格沃兹测试开发】腾讯/ 百度/ 阿里/ 字节测试专家技术沙龙分享合集/ 精准化测试/ 流量回放/Diff

【霍格沃兹测试开发】Pytest 用例结构/ 编写规范 / 免费分享

【霍格沃兹测试开发】JMeter 实时性能监控平台/ 数据分析展示系统Grafana/Docker 安装

【霍格沃兹测试开发】接口自动化测试的场景有哪些?为什么要做接口自动化测试?如何一键生成测试报告?

【霍格沃兹测试开发】面试技巧指导/ 测试开发能力评级/1V1 模拟面试实战/ 冲刺年薪百万!

【霍格沃兹测试开发】腾讯软件测试能力评级标准/ 要评级表格的联系我

【霍格沃兹测试开发】Pytest 与Allure2 一键生成测试报告/ 测试用例断言/ 数据驱动/ 参数化

【霍格沃兹测试开发】App 功能测试实战快速入门/adb 常用命令/adb 压力测试

【霍格沃兹测试开发】阿里/ 百度/ 腾讯/ 滴滴/ 字节/ 一线大厂面试真题讲解,卷完拿高薪Offer !

【霍格沃兹测试开发】App自动化测试零基础快速入门/Appium/自动化用例录制/参数配置

【霍格沃兹测试开发】如何用Postman 做接口测试,从入门到实战/ 接口抓包(最新最全教程)

相关文章:

人工智能 | 阿里通义千问大模型

简介 通义千问系列模型为阿里云研发的大语言模型。千问模型基于 Transformer 架构&#xff0c;在超大规模的预训练数据上进行训练得到。预训练数据类型多样&#xff0c;覆盖广泛&#xff0c;包括大量网络文本、专业书籍、代码等。同时&#xff0c;在预训练模型的基础之上&…...

Windows环境下Qt Creator调试模式下qDebug输出中文乱码问题

尝试修改系统的区域设置的方法&#xff1a; 可以修复问题。但会出现其它问题&#xff1a; 比如某些软件打不开&#xff0c;或者一些软件界面的中文显示乱码&#xff01; 暂时没有找到其它更好的办法。...

java防止表单重复提交的注解@RepeatSubmit

代码解释 RepeatSubmit 是一个自定义注解&#xff0c;通常用于防止表单重复提交。这个注解可以应用于控制器方法上&#xff0c;以确保同一个请求在一定时间内不会被多次提交。以下是一些常见的参数和用法&#xff1a; value: 注解的名称或描述。 interval: 两次请求之间的最小间…...

HTTP快速入门

HTTP报文结构 HTTP 协议主要由三大部分组成&#xff1a; ● 起始行&#xff08;start line&#xff09;&#xff1a;描述请求或响应的基本信息&#xff1b; ● 头部字段&#xff08;header&#xff09;&#xff1a;使用 key-value 形式更详细地说明报文&#xff1b; ● 消息正…...

Nacos简介

Nacos是一个开源的动态服务发现、配置管理和服务管理平台&#xff0c;由阿里巴巴集团开发并开源。它提供了服务注册与发现、配置管理、动态DNS服务、服务健康监测、权重和流量管理等核心特性&#xff0c;非常适合构建云原生应用和微服务架构。 Nacos的核心功能包括&#xff1a…...

基于深度学习的稳健的模型推理与不确定性建模

基于深度学习的稳健模型推理与不确定性建模&#xff0c;是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功&#xff0c;如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理&#xff0c;并能够量化这种不确定性&#xff0c;成为关键问题。稳健性与不确…...

C语言 sizeof 的介绍,以及sizeof计算数组名、 数组首地址、数组的元素之间的区别

一、sizeof 介绍 sizeof 是 C 语言中的一个运算符&#xff0c;用于计算数据类型或变量在内存中占用的字节数。用于计算数据类型或变量所占的内存大小&#xff0c;以字节为单位。它可以在编译时计算其操作数的大小&#xff0c;并返回一个 size_t 类型的值。它可以帮助了解不同类…...

深入理解Oracle闪回技术

引言&#xff1a; Oracle 闪回&#xff08;Flashback&#xff09;是一组强大的功能&#xff0c;用于恢复数据库中的数据或对象到过去的某个时间点或状态&#xff0c;而无需进行传统的基于备份和恢复的操作。 Oracle 闪回的主要类型 1. 闪回查询&#xff08;Flashback Query&…...

Go 语言初探

Google 公司有一个传统,允许员工利用 20% 的工作时间开发自己的实验项目。2007 年 9月,UTF-8 的设计者之一 Rob Pike(罗布.皮克)在 Google 的分布式编译平台上进行 C++ 编译时,与同事 Robert Griesemer (罗布.格里泽默)在漫长的等待中讨论了编程语言面临的主要问题。他们一…...

使用ROS资源编排一键部署LNMP建站环境,手动整理教程

LNMP是目前主流的网站服务器架构之一&#xff0c;适合运行大型和高并发的网站应用&#xff0c;例如电子商务网站、社交网络、内容管理系统等。LNMP分别代表Linux、Nginx、MySQL和PHP。本文阿里云服务器网aliyunfuwuqi.com介绍如何使用阿里云资源编排服务&#xff08;ROS&#x…...

猎板PCB镍钯金工艺你了解多少?

PCB镍钯金工艺&#xff0c;也称为ENEPIG&#xff08;Electroless Nickel Electroless PALLADIum Gold&#xff09;工艺&#xff0c;是一种在PCB表面处理中使用的先进工艺。这种工艺通过在PCB线路板上形成一层镍钯合金层&#xff0c;有效地提高了线路板的耐氧化性、耐腐蚀性和可…...

热更新解决方案2 —— Lua语法相关知识点

概述 开发环境搭建 Lua语法 1.第一个Lua程序 2.变量 print("******变量*******"); --lua当中的简单变量类型 -- nil number string boolean -- lua 中所有的变量声明 都不需要声明变量类型 它会自动的判断类型 -- 类似C# 中的var --lua中的一个变量 可以随便赋值 ——…...

【c++ arx选项板】

static void xlArx_gmenu(void) {if (!g_pPaletteSetEx){g_pPaletteSetEx=CTunnelSectionPaletteSetEx::Instance(...

新时代下吉林省城乡流动人才就业问题及路径探析

摘要&#xff1a;新时代背景下&#xff0c;中国经济快速发展&#xff0c;城乡融合发展成为缩小城乡差距&#xff0c;推动共同富裕的重要方式。吉林省作为东北老工业基地&#xff0c;传统产业竞争优势减弱&#xff0c;城乡流动人才就业规模增加&#xff0c;并呈现“农村-城市”的…...

Go 1.19.4 命令调用、日志、包管理、反射-Day 17

1. 系统命令调用 所谓的命令调用&#xff0c;就是通过os&#xff0c;找到系统中编译好的可执行文件&#xff0c;然后加载到内存中&#xff0c;变成进程。 1.1 exec.LookPath&#xff08;寻找命令&#xff09; 作用&#xff1a; exec.LookPath 函数用于在系统的环境变量中搜索可…...

Unity 2d UI 实时跟随场景3d物体

2d UI 实时跟随场景3d物体位置&#xff0c;显示 3d 物体头顶信息&#xff0c;看起来像是场景中的3dUI&#xff0c;实质是2d UIusing System.Collections; using System.Collections.Generic; using UnityEngine; using DG.Tweening; using UnityEngine.UI; /// <summary>…...

全方面熟悉Maven项目管理工具(二)坐标、pom.xml文件的解读!

1. 坐标&#xff08;核心概念&#xff09; 1.1 数学中的坐标 使用 x、y、z 三个向量作为空间的坐标系&#xff0c;可以在空间中唯一的定位到一个点 1.2 Maven 中的坐标 1.2.1 向量说明&#xff1a; 使用三个向量在 Maven的仓库 中唯一的定位到一个 jar 包 groupId&#xf…...

php常用设计模式之单例模式

设计模式是我们日常开发中最常用的编程模式之一&#xff0c;也是面试中最高频的考点之一。通过合理运用设计模式&#xff0c;可以使代码结构更加清晰、易于维护。通过这篇文章 我也讲一下设计模式中的单例模式&#xff0c;了解下它的原理和适用场景。 单例模式 单例模式&…...

一文搞懂Android主题和样式

1. 概念与作用 1.1 定义与组成 Android Theme是用于定义应用程序或其部分的视觉和界面风格的一种资源。主题在Android中扮演着重要的角色&#xff0c;它们允许开发者统一和自定义应用的外观和感觉。一个主题定义了一组属性集合&#xff0c;这些属性可以是颜色、字体、控件样式…...

360与重庆科技大学战略携手,为数字中国建设输送实战人才

近日&#xff0c;360数字安全集团与重庆科技大学正式签订了战略合作协议&#xff0c;双方将围绕创新人才培养、科研技术攻关、专业实验室共建、车联网安全以及社会服务等多个维度展开深度合作&#xff0c;共同打造数字安全人才培养新高地&#xff0c;为数字重庆的建设与发展注入…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...