基于径向基神经网络(RBF)的构网型VSG自适应惯量控制MATLAB仿真模型
微❤关注“电气仔推送”获得资料(专享优惠)
模型简介
逆变器虚拟同步发电机控制和核心控制参数就是虚拟惯量与虚拟阻尼,目前的文献中已有众多论文对VSG的虚拟参数展开了研究,但是百分之90都是采用构造函数的方法,使用智能优化算法的特别少。此模型参考上海电力大学的相关RBF_VSG论文进行搭建,暂时只针对虚拟惯量进行了RBF优化,基本上实现了RBF自适应惯量的功能,但是效果不见得突出,可以在功率指令变化时,减少频率的波动,但是对功率波动性效果较差。总的来说,模型主体结构都是完整的,大家可以在这个模型上继续完善优化,适合入门自适应参数的同学,如果是需要完美效果模型,请不要上手此模型!!
VSG控制
引入VSG的主要目的是为电力系统增加惯性和阻尼,这个目的主要是通过模 拟传统同步发电机的转子运动方程实现的。除此之外,VSG还可以模拟其它同步 发电机的主要特性。模拟的四个主要特性如下:
(1) 旋转惯量,
(2) 阻尼器绕组的阻尼效应,
(3) 调速器的下垂特性与励磁调节,
(4) 定子电压方程。

VSG的原理不再进行描述,网上的资料太多了!
RBF神经网络
RBF神经网络一般为三层前向的结构,对于连续非线性函数 具有很好的逼近效果,且算法简单,学习能力强大,学 习速度快,能够满足实时控制的需求。
模型中的RBF采用2-5-1的网络结构,本次设计所采用的RBF 神经网络结构图见图5,神经网络为三层结构,输入层、 输出层和一个隐含层。如图所示,j、i和l分别表示输入层节点、隐含层节点和输出层节点。本次输入层的个数为2,隐含层的个数为5,输出层的个数为1。在 图中RBF神经网络的两个输入节点对应虚拟同步发 电机的角频率变化量与角频率变化率,隐含层函数选 用高斯基函数,输出节点对应虚拟转动惯量J。


控制器算法流程:
( 1) 确定RBF神经网络的结构,确定输入节点数、 隐层基函数、输出节点数,选定学习率和惯性系数,给 网络权值赋初值,确定高斯基函数ci ,bi 数值,ω,J初 始化;
( 2) 计算神经网络的输入与输出,RBF神经网络的 输出即为虚拟转动惯量J;
( 3) 根据式(1) 得到控制器输出ω;
( 4) RBF 神经网络进行学习,对隐层到输出层之间 的权值进行调整;
( 5) 进行下一轮仿真迭代,程序再次执行(2)。
模型主体

算法展示

功率波形对比

功率波形如上图所示,仿真时间为1s,在0.5秒时,构网逆变器功率指令由10kW升至15KW。VSG控制器可以完美跟踪功率指令,但采用RBF自适应惯量控制的功率响应效果不明显。
频率波形对比

系统频率波形如上图所示,可见当系统功率指令发生变化时,频率也会产生波动,普通VSG控制的频率波动值为0.145Hz;采用RBF自适应惯量控制的频率波动值为0.125Hz。频率波动抑制效果较为明显!!
自适应惯量变化

自适应惯量变化情况如上图所示,可见当系统功率指令发生变化时,RBF惯量控制可根据VSG响应特性自适应改变惯量值。
参考文献
基于改进型RBF神经网络的VSG转动惯量自适应控制_杨旭红
基于虚拟同步发电机的逆变器并网稳定性研究_姚凤军
相关文章:
基于径向基神经网络(RBF)的构网型VSG自适应惯量控制MATLAB仿真模型
微❤关注“电气仔推送”获得资料(专享优惠) 模型简介 逆变器虚拟同步发电机控制和核心控制参数就是虚拟惯量与虚拟阻尼,目前的文献中已有众多论文对VSG的虚拟参数展开了研究,但是百分之90都是采用构造函数的方法,使用…...
简单汇编教程9 字符串与字符串指令
目录 字符串的指令 movs 字符串传送 lods, stos使用 cmpsb的使用 SCASB的使用 字符串你很熟悉了,我们定义了无数次了! %macro ANNOUNCE_STRING 2%1 db %2%1_LEN equ $ - %1 %endmacro 当然,我们现在来学习一个比较新的定义方式…...
Taro构建的H5页面路由切换返回上一页存在白屏页面过渡
目录 项目背景:Taro与Hybrid开发问题描述:白屏现象可能的原因包括: 解决方案解决后的效果图 其他优化方案可参考: 项目背景:Taro与Hybrid开发 项目使用Taro框架同时开发微信小程序和H5页面,其中H5页面被嵌…...
【学习笔记】网络设备(华为交换机)基础知识 9 —— 堆叠配置
提示:学习华为交换机堆叠配置,含堆叠的概念、功能、角色、ID和优先级;堆叠的建立过程以及注意事项;包含堆叠的配置命令,以及堆叠的配置案例 一、前期准备 1.已经可以正常访问交换机的命令行接口 Console口本地访问教…...
jeston编译配置cuda加速版opencv
1.源码下载连接 opencv:Releases - OpenCV opencv-contrib: https://github.com/opencv/opencv_contrib 建议不要下最新版本 一般我会下4.5.4 // 4.5.6 // 4.6.0 opencv和opencv-contrib版本要对齐 将下好的opencv和opencv-contrib解压 将opencv-c…...
ApacheShiro反序列化 550 721漏洞
Apache Shiro是一个强大且易用的Java安全框架,执行身份验证、授权、密码和会话管理个漏洞被称为 Shiro550 是因为在Apache Shiro的GitHub问题跟踪器中,该漏洞最初被标记为第550个问题,721漏洞名称也是由此而来 Shiro-550 CVE-2016-4437 Shiro反序列化Docker复现 …...
Github + 自定义域名搭建个人静态站点
Github 自定义域名搭建个人静态站点 使用 Github 部署一个自己的免费站点给你的站点添加上自定义域名 本文基于腾讯云基于二级域名, 作用于 Github 实现自定义域名站点 使用 Github 部署一个自己的免费站点 首先你得有一个 Github 账号, 没有就去注册一个,网上有教程,本文跳…...
使用OpenCV进行视频边缘检测:案例Python版江南style
1. 引言 本文将演示如何使用OpenCV库对视频中的每一帧进行边缘检测,并将结果保存为新的视频文件。边缘检测是一种图像处理技术,它可以帮助我们识别出图像中不同区域之间的边界。在计算机视觉领域,这项技术有着广泛的应用,比如物体…...
DataWhale10月动手实践——Bot应用开发task04学习笔记
一、图像流 1. 什么是图像流? 图像流是一种直观的图像处理流程工具,用户可以灵活组合各类图像处理模块。该系统将不同的图像处理工具模块化,并通过可视化界面,将这些模块以拖拽方式组合,构建完整的处理流程。用户可以…...
关于 IntelliJ IDEA 2024 安装使用
补丁文件...
React是如何工作的?
从编写组件到最后屏幕生成界面,如上图所示,我们现在需要知道的就是后面几步是如何运行的。 概述 这张图解释了 React 渲染过程的几个阶段: 渲染触发:通过更新某处的状态来触发渲染。渲染阶段:React 调用组件函数&…...
llama.cpp 去掉打印,只显示推理结果
llama.cpp 去掉打印,只显示推理结果 1 llama.cpp/common/log.h #define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__) #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__) #define LOG_ERR(…...
Word、PDF转换为图片Java
Word、PDF转换为图片Java 需求要在小程序端展示文档内容,所以将文档每页转换为图片后显示 参考和其他等方案: https://blog.csdn.net/strggle_bin/article/details/140599514 https://www.modb.pro/db/566986 https://blog.csdn.net/spring_is_comin…...
iOS IPA上传到App Store Connect的三种方案详解
引言 在iOS应用开发中,完成开发后的重要一步就是将IPA文件上传到App Store Connect以便进行测试或发布到App Store。无论是使用Xcode进行原生开发,还是通过uni-app、Flutter等跨平台工具生成的IPA文件,上传到App Store的流程都是类似的。苹果…...
Java中的Arrays类
java.util.Arrays是一个非常实用的类,提供了许多静态方法来操作数组,如排序、查找、复制和填充等。 1. toString - 将数组转换为字符串 // 导入java.util.Arrays类 import java.util.Arrays;public class ArraysExample {public static void main(Stri…...
GUI编程
GUI编程 【Java从0到架构师课程】笔记 GUI简介 GUI:图形用户界面,在计算机中采用图形的方式显示用户界面 java的GUI开发 AWT:java最早推出的GUI编程开发包,界面风格跟随操作系统SWT:eclipse就是java使用SWT开发的Sw…...
(multi)map和set--C++
文章目录 一、序列式容器和关联式容器二、set系列的使用1、set和multiset参考文档2、set类的介绍3、set的构造和迭代器4、set的增删查5、insert和迭代器遍历使用样例:6、find和erase使用样例:7、multiset和set的差异 三、map系列的使用1、map和multimap参…...
jmeter响应断言放进csv文件遇到的问题
用Jmeter的json 断言去测试http请求响应结果,发现遇到中文时出现乱码,导致无法正常进行响应断言,很影响工作。于是,察看了其他测试人员的解决方案,发现是jmeter本身对编码格式的设置导致了这一问题。解决方案是在jmete…...
复旦大学全球供应链研究中心揭牌,合合信息共话大数据赋能
10月13日,复旦大学全球供应链研究中心(以下简称“中心”)揭牌仪式在复旦大学管理学院政立院区隆重举行。我国的供应链体系庞大复杂,在百年未有之大变局下,保障产业链供应链安全已成为我国的重要战略目标。中心的设立旨…...
达那福发布新品音致系列:以顶尖降噪技术,开启清晰聆听新篇章
近日,国际知名助听器品牌达那福推出其最新研发的音致系列助听器。该系列产品旨在通过顶尖的声音处理技术,直面助听器市场中普遍存在的挑战——如何在噪声环境中提供清晰的语音辨识。 根据助听器行业协会2022年的调查数据,高达86%的佩戴者认为…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
免费批量Markdown转Word工具
免费批量Markdown转Word工具 一款简单易用的批量Markdown文档转换工具,支持将多个Markdown文件一键转换为Word文档。完全免费,无需安装,解压即用! 官方网站 访问官方展示页面了解更多信息:http://mutou888.com/pro…...
【字节拥抱开源】字节团队开源视频模型 ContentV: 有限算力下的视频生成模型高效训练
本项目提出了ContentV框架,通过三项关键创新高效加速基于DiT的视频生成模型训练: 极简架构设计,最大化复用预训练图像生成模型进行视频合成系统化的多阶段训练策略,利用流匹配技术提升效率经济高效的人类反馈强化学习框架&#x…...
