YOLOv11改进-卷积-引入小波卷积WTConv 解决多尺度小目标问题
本篇文章将介绍一个新的改进机制——WTConv(小波卷积),并阐述如何将其应用于YOLOv11中,显著提升模型性能。YOLOv11模型相比较于前几个模型在检测精度和速度上有显著提升,但其仍然受卷积核感受野大小的限制。因此,我们引入了小波卷积模块,旨在扩大卷积的感受野并有效捕捉图像中的低频信息。其对多尺度问题和小目标问题上有很好的效果。
首先,我们将解析WTConv的工作原理,它通过小波变换将输入图像分解为不同的频率成分,并在每个频率层上进行小尺寸卷积,最后通过逆小波变换将结果重新组合,从而实现对图像的多尺度分析。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。
1. Wavelet Convolutions(WTConv)结构介绍
1. 首先,WTConv利用二维Haar小波变换对输入图像进行多级分解。Haar小波变换使用四个滤波器,将图像分解为四个子带:低频分量 (LL):捕捉图像的低频信息,如整体形状或轮廓。水平高频分量 (LH):捕捉图像中的水平边缘信息。垂直高频分量 (HL):捕捉图像中的垂直边缘信息。对角线高频分量 (HH):捕捉图像的对角线细节。在每一级的小波变换中,图像被下采样(空间分辨率减半),但频率信息得到了更细的分解。递归地执行小波变换(称为多级分解)可以得到不同尺度下的频率分量。
2. 在WTConv中,卷积并非直接在原始输入图像上进行,而是分别在每个频率子带上应用小尺寸的深度卷积核。通常使用3x3或5x5的小卷积核,对分解后的各个子带进行卷积操作。由于小波变换降低了每个子带的空间分辨率,小尺寸的卷积核可以覆盖更大的原始图像区域,即感受野增大。
低频子带 (LL) 主要包含了图像的大尺度信息,因此在其上应用卷积有助于捕捉全局的特征。
高频子带 (LH, HL, HH) 则包含局部边缘和细节信息,卷积操作可以捕捉这些细节。
3. 在完成卷积后,使用逆小波变换(Inverse Wavelet Transform, IWT)将各个子带的卷积结果重新合成为一个完整的输出。这一过程类似于将不同频率层次的特征融合在一起。值得注意的是,IWT操作是线性的,因此可以无损地将卷积结果重构到原始空间。
2. YOLOv11与WTConv的结合
1. 改进C3k2:本文使用WTConv卷积改进C3k2,构建C3k2_WT模块,然后使用C3k2_WT替换原有的C3k2,这样就可以利用WTConv扩大模型的感受野。
2. 在head中使用DSConvWithWT卷积:本文使用WTConv卷积构建DSConvWithWT深度可分离卷积,然后将它替换head中的深度可分离卷积,扩大head层的感受野。
3. Wavelet Convolutions(WTConv)代码部分
import pywt
import pywt.data
import torch
from torch import nn
from functools import partial
import torch.nn.functional as Ffrom .conv import Conv
from .block import C2f, C3, Bottleneckdef create_wavelet_filter(wave, in_size, out_size, type=torch.float):w = pywt.Wavelet(wave)dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)return dec_filters, rec_filtersdef wavelet_transform(x, filters):b, c, h, w = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)x = x.reshape(b, c, 4, h // 2, w // 2)return xdef inverse_wavelet_transform(x, filters):b, c, _, h_half, w_half = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = x.reshape(b, c * 4, h_half, w_half)x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)return x# Wavelet Transform Conv(WTConv2d)
class WTConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):super(WTConv2d, self).__init__()assert in_channels == out_channelsself.in_channels = in_channelsself.wt_levels = wt_levelsself.stride = strideself.dilation = 1self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)self.wt_function = partial(wavelet_transform, filters=self.wt_filter)self.iwt_function = partial(inverse_wavelet_transform, filters=self.iwt_filter)self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels, bias=bias)self.base_scale = _ScaleModule([1, in_channels, 1, 1])self.wavelet_convs = nn.ModuleList([nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)])self.wavelet_scale = nn.ModuleList([_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)])if self.stride > 1:self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,groups=in_channels)else:self.do_stride = Nonedef forward(self, x):x_ll_in_levels = []x_h_in_levels = []shapes_in_levels = []curr_x_ll = xfor i in range(self.wt_levels):curr_shape = curr_x_ll.shapeshapes_in_levels.append(curr_shape)if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)curr_x_ll = F.pad(curr_x_ll, curr_pads)curr_x = self.wt_function(curr_x_ll)curr_x_ll = curr_x[:, :, 0, :, :]shape_x = curr_x.shapecurr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))curr_x_tag = curr_x_tag.reshape(shape_x)x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])next_x_ll = 0for i in range(self.wt_levels - 1, -1, -1):curr_x_ll = x_ll_in_levels.pop()curr_x_h = x_h_in_levels.pop()curr_shape = shapes_in_levels.pop()curr_x_ll = curr_x_ll + next_x_llcurr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)next_x_ll = self.iwt_function(curr_x)next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]x_tag = next_x_llassert len(x_ll_in_levels) == 0x = self.base_scale(self.base_conv(x))x = x + x_tagif self.do_stride is not None:x = self.do_stride(x)return xclass _ScaleModule(nn.Module):def __init__(self, dims, init_scale=1.0, init_bias=0):super(_ScaleModule, self).__init__()self.dims = dimsself.weight = nn.Parameter(torch.ones(*dims) * init_scale)self.bias = Nonedef forward(self, x):return torch.mul(self.weight, x)class DSConvWithWT(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3):super(DSConvWithWT, self).__init__()# 深度卷积:使用 WTConv2d 替换 3x3 卷积self.depthwise = WTConv2d(in_channels, in_channels, kernel_size=kernel_size)# 逐点卷积:使用 1x1 卷积self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)def forward(self, x):x = self.depthwise(x)x = self.pointwise(x)return xclass Bottleneck_WT(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""super().__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = WTConv2d(c_, c2)self.add = shortcut and c1 == c2def forward(self, x):"""Applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3k_WT(C3):"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):"""Initializes the C3k module with specified channels, number of layers, and configurations."""super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e) # hidden channels# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))self.m = nn.Sequential(*(Bottleneck_WT(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))# 在c3k=True时,使用Bottleneck_WT特征融合,为false的时候我们使用普通的Bottleneck提取特征
class C3k2_WT(C2f):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(C3k_WT(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n))if __name__ == '__main__':DW = DSConvWithWT(256, 128)#创建一个输入张量batch_size = 8input_tensor=torch.randn(batch_size, 256, 64, 64 )#运行模型并打印输入和输出的形状output_tensor =DW(input_tensor)print("Input shape:",input_tensor.shape)print("0utput shape:",output_tensor.shape)
4. 将WTConv引入到YOLOv11中
第一: 将下面的核心代码复制到D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\nn路径下,如下图所示。
第二:在task.py中导入WTConv包
第三:在task.py中的模型配置部分下面代码
第一个改进需修改的地方
第二个改进,需修改的地方
将DWConv改成DSConvWithWT
第四:将模型配置文件复制到YOLOV11.YAMY文件中
第一个修改的配置文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2_WT, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2_WT, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2_WT, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2_WT, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
第二个修改的配置文件
第二个不需要修改配置文件
第五:运行成功
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorldif __name__=="__main__":# 使用自己的YOLOv11.yamy文件搭建模型并加载预训练权重训练模型model = YOLO(r"D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\cfg\models\11\yolo11_WTConv.yaml")\.load(r'D:\bilibili\model\YOLO11\ultralytics-main\yolo11n.pt') # build from YAML and transfer weightsresults = model.train(data=r'D:\bilibili\model\ultralytics-main\ultralytics\cfg\datasets\VOC_my.yaml',epochs=100, imgsz=640, batch=8)
相关文章:

YOLOv11改进-卷积-引入小波卷积WTConv 解决多尺度小目标问题
本篇文章将介绍一个新的改进机制——WTConv(小波卷积),并阐述如何将其应用于YOLOv11中,显著提升模型性能。YOLOv11模型相比较于前几个模型在检测精度和速度上有显著提升,但其仍然受卷积核感受野大小的限制。因此&#…...
flask 接口还在执行中,前端接收到接口请求超时,解决方案
在 Flask 中,当某个接口执行时间较长而导致前端请求超时时,需要考虑以下解决方案: 1. 优化接口的响应时间 如果可能,先优化接口中的代码逻辑,减少处理时间。对于查询操作,可以考虑数据库索引优化、缓存机制等手段。2. 增加请求超时时间 如果接口确实需要较长时间完成,前…...

探索 Python 中的 XML 转换利器:xml2dict
文章目录 **探索 Python 中的 XML 转换利器:xml2dict**一、背景介绍二、xml2dict 是什么?三、如何安装 xml2dict?四、基本用法五、实际应用场景六、常见问题及解决方案七、总结 探索 Python 中的 XML 转换利器:xml2dict 一、背景…...

dbt-codegen: dbt自动生成模板代码
dbt项目采用工程化思维,数据模型分层实现,支持描述模型文档和测试,非常适合大型数据工程项目。但也需要用户编写大量yaml描述文件,这个过程非常容易出错且无聊。主要表现: 手工为dbt模型编写yaml文件,这过…...

springboot057洗衣店订单管理系统(论文+源码)_kaic
基于springboot的洗衣店订单管理系统 摘要 随着信息互联网信息的飞速发展,无纸化作业变成了一种趋势,针对这个问题开发一个专门适应洗衣店业务新的交流形式的网站。本文介绍了洗衣店订单管理系统的开发全过程。通过分析企业对于洗衣店订单管理系统的需求…...
南大通用(GBase 8s)数据库在 Spring Boot 中使用 Flyway
db-migration:Flyway、Liquibase 扩展支持达梦(DM)数据库、南大通用(GBase 8s)数据库,并支持 Flowable 工作流。 已支持 达梦数据库(DM 8)。默认支持 flowable 工作流。南大通用数…...

CMakeLists.txt 编写规则
目录 1. 注释 1.1 注释行 1.2 注释块 2. CMakeLists.txt的编写 2.1 同意目录下的源文件 2.2 SET指令 2.3 file和aux_source_directory 2.4 包含头文件 2.5 生成动态库和静态库 2.6 链接库文件 2.7 message指令 2.8 移除操作 2.9 find_library和find_package 3. 常…...

Javascript算法——二分查找
1.数组 1.1二分查找 1.搜索索引 开闭matters!!![left,right]与[left,right) /*** param {number[]} nums* param {number} target* return {number}*/ var search function(nums, target) {let left0;let rightnums.length-1;//[left,rig…...
node-sass/vendor/linux-x64-72 : Error: EACCES: permission denied, mkdir
npm i --unsafe-perm node-sassgithub解决问题...

uniapp-uniapp + vue3 + pinia 搭建uniapp模板
使用技术 ⚡️uni-app, Vue3, Vite, pnpm 📦 组件自动化引入 🍍 使用 Pinia 的状态管理 🎨 tailwindcss - 高性能且极具灵活性的即时原子化 CSS 引擎 😃 各种图标集为你所用 🔥 使用 新的 <script setup> …...

深度学习的一些数学基础
数学基础 万丈高楼平地起 怎么说呢,学的数二对于这些东西还是太陌生了,而且当时学的只会做题,不知道怎么使用/(ㄒoㄒ)/~~ 所以记下来一些不太清楚的前置知识点,主要来自《艾伯特深度学习》,书中内容很多,…...

自由学习记录(13)
服务端常见的“资源” 在服务端,常见的“资源”指的是服务端提供给客户端访问、使用、处理或操作的各种数据和功能。根据不同类型的服务和应用场景,服务端的资源种类可以非常广泛。以下是一些常见的服务端资源类型: 1. 文件和静态资源 网页…...

低代码可视化-uniapp海报可视化设计-代码生成
在uni-app中,海报生成器通常是通过集成特定的插件或组件来实现的,这些插件或组件提供了生成海报所需的功能和灵活性。我们采用了lime-painter海报组件。lime-painter是一款canvas海报组件,可以更轻松地生成海报。它支持通过JSON及Template的方…...

一次使用LD_DEBUG定位问题的经历
在实际工作中,当遇到段错误,我们会很容易的想到这是非法访问内存导致的,比如访问了已经释放的内存,访问数据越界,尝试写没有写权限的内存等。使用gdb进行调试,查看出异常的调用栈,往往可以定位到…...
数据库安全:如何进行数据库安全审计?
数据库安全:如何进行数据库安全审计? 数据库安全审计是保障数据库安全的重要手段之一,可以帮助企业及时发现潜在的安全风险并采取相应的措施。以下是进行数据库安全审计的步骤和方法: 一、确定审计目标 在进行数据库安全审计之前,首先需要确定审计的目标。这可能包括以…...
【Python】基础语法错误和异常
在Python中,语法错误和异常是两个常见的问题。下面对它们进行简要介绍。 1.语法错误 (Syntax Error) 语法错误是指代码的语法不符合Python的语言规则。当Python解释器读取程序代码时,如果发现语法不正确,就会抛出语法错误。这种错误通常在代…...
获取每个页面的元素,并写入json
获取每个页面的元素,并写入json 想法:如何去记住每个页面的元素,如何实现不同页面的导航,如何从主页面遍历每一个页面的每一个元素 1.创建数据结构存储 2.树状图正好是我们想要的结构体:创建树状图结构体 3.记录每个页…...
【ShuQiHere】深入解析数字电路中的锁存器与触发器
深入解析数字电路中的锁存器与触发器 🤖🔌 在数字电路设计中,**锁存器(Latch)和触发器(Flip-Flop)**是实现时序逻辑的基本元件。它们能够存储状态,是构建复杂数字系统的关键。本文将…...

【学习AI-相关路程-mnist手写数字分类-python-硬件:jetson orin NX-自我学习AI-基础知识铺垫-遇到问题(1) 】
【学习AI-相关路程-mnist手写数字分类-python-硬件:jetson orin NX-自我学习AI-基础知识铺垫-遇到问题(1) 】 1、前言2、先行了解(1)学习基础知识-了解jetson orin nx 设备(2)学习python&AI…...

数据轻松上云——Mbox边缘计算网关
随着工业4.0时代的到来,工厂数字化转型已成为提升生产效率、优化资源配置、增强企业竞争力的关键。我们凭借其先进的边缘计算网关与云平台技术,为工厂提供了高效、稳定的数据采集与上云解决方案。本文将为您介绍Mbox边缘计算网关如何配合明达云平台&…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...