当前位置: 首页 > news >正文

基于AI的量化投资框架Qlib的Python依赖包pyqlib安装问题记录

版权声明:本文为博主原创文章,如需转载请贴上原博文链接:基于AI的量化投资框架Qlib的Python依赖包pyqlib安装问题记录-CSDN博客


前言:最近想使用Qlib来做量化交易的策略研究,但是第一步就卡在了安装pyqlib依赖包,故记录以自查避坑;附录给出详细的安装需求依赖以及pyqlib的详细依赖树(图片很长,流量警告!)。


目录

一、环境准备

二、pip安装

2.1 安装pyqlib所需的依赖

2.2 pyproject.toml报错

附录1:pyqlib安装过程中的需求依赖

附录2:pyqlib的依赖树


一、环境准备

1.1 电脑版本:Microsoft Windows 10 专业版,x64-based PC

1.2 python版本:Python 3.7.4

Tips:适用于pyqlib的python版本如下图,官方建议至少将python版本升级到py3.7,而py3.9会有部分功能不支持,故建议的python版本为py3.7或py3.8(更推荐py3.8):

图1 适用于pyqlib的python版本

二、pip安装

        在使用pip安装之前,曾尝试使用conda安装,但是Anaconda库里面没有pyqlib的依赖包,所以只能使用pip安装。qlib官方给出的安装方式有两种:①pip安装(如图2.1 pyqlib==0.9.5支持的环境和py版本【截至目前20241023最新的版本】),②使用源代码安装(适用于安装处在开发中的最新版本),以下只针对使用pip的安装方式进行记录。

图2.1 pyqlib==0.9.5支持的环境和py版本

2.1 安装pyqlib所需的依赖

        在开始安装之前先查看下pyqlib==0.9.5版本的所需依赖(如图2.2),文章最后给出具体依赖包版本截图(见附录)。

图2.2 安装pyqlib所需的依赖

        一般直接使用pip安装可能会出现下载链接超时,有两种方式避免,如下:

# 法一:使用清华镜像源(推荐)
pip install pyqlib -i https://pypi.tuna.tsinghua.edu.cn/simple/# 法二:下载whl文件后再pip安装:https://pypi.org/project/pyqlib/0.9.5/#files
pip install pyqlib-0.9.5-cp37-cp37m-win_amd64.whl --user

一般能够顺利安装,但是我在使用whl文件安装的时候出现一些非pip的安装问题。

2.2 pyproject.toml报错

        在整个安装过程中,除了pip链接超时等问题之外,还遇到pyproject.toml报错,这是因为在安装pyqlib包的时候,它的依赖包里面的其他关联依赖包出现问题,如图2.3所示,此时我们选择下载出问题的依赖包进行手动安装即可。

图2.3 pyproject.toml报错

        在手动安装的过程中,发现这个报错的原因是:通过pip安装pyqlib依赖的时候往往是查找对应环境的最新版本,例如上图中的scs包,下载的是scs-3.2.7,而在pypi库中找到该版本不支持py3.7,而scs最后一个支持py3.7的版本是scs3.2.4,所以文章开头更加推荐python的环境版本升级到py3.8。

        最后,看似该包安装较简单,但是也花费了两到三天,主要是出现了“pyproject.toml”问题花费了一些时间,途中还查找了一些“pyproject.toml-based projects”相关的解决方法,也安装了Microsoft C++生成工具,但实际上和这个无关,而是因为py环境对依赖包的版本不支持所造成的。

附录1:pyqlib安装过程中的需求依赖

附录2:pyqlib的依赖树

相关文章:

基于AI的量化投资框架Qlib的Python依赖包pyqlib安装问题记录

版权声明:本文为博主原创文章,如需转载请贴上原博文链接:基于AI的量化投资框架Qlib的Python依赖包pyqlib安装问题记录-CSDN博客 前言:最近想使用Qlib来做量化交易的策略研究,但是第一步就卡在了安装pyqlib依赖包&#…...

《语音识别方案选择》

《语音识别方案选择》 一、引言二、语音识别技术概述(一)语音识别的基本原理(二)语音识别技术的发展历程(三)语音识别技术的分类1、基于声学模型的语音识别2、基于语言模型的语音识别3、端到端的语音识别 三…...

目标检测数据集图片及标签同步裁剪

目录 前言 具体方法 使用介绍 完整代码 前言 在目标检测任务中,模型的训练依赖于大量高质量的标注数据。然而,获取足够多的标注数据集往往代价高昂,并且某些情况下,数据集中的样本分布不均衡,这会导致模型的泛化能…...

【设计模式-简单工厂】

定义 简单工厂模式(Simple Factory Pattern)是一种创建型设计模式,用于通过一个工厂类来创建某个产品类的实例,而不直接在客户端(调用方)中实例化对象。 这种模式的主要思想是将对象的创建逻辑集中在一个…...

多个版本的GCC(GNU编译器集合)可以同时安装并存

在Ubuntu系统中,多个版本的GCC(GNU编译器集合)可以同时安装并存。GCC是编译C、C以及其他编程语言程序的重要工具,不同的项目可能需要不同版本的GCC来确保兼容性。 为什么需要多个GCC版本 项目依赖:不同的软件项目可能…...

量子纠错--shor‘s 码

定理1 (量子纠错的条件) C是一组量子编码,P是映射到C上的投影算子。假设是一个算子元素描述的量子操作,那么基于量子编码C,存在一个能对抗描述的噪声的纠错操作R的充要条件是 对某个复元素厄米矩阵成立。 将算子元素称为导致的错误。如果这样…...

机器学习2

一、模型评估方法 1.1 K折交叉验证法(K-Fold Cross Validation) 1.1.1 定义 K折交叉验证法是一种用于评估模型性能的技术。它将数据集分为K个相等的子集,模型会轮流使用一个子集作为测试集,其余K-1个子集作为训练集。这个过程会…...

二分查找_ x 的平方根搜索插入位置山脉数组的峰顶索引

x 的平方根 在0~X中肯定有数的平方大于X&#xff0c;这是肯定的。我们需要从中找出一个数的平方最接近X且不大于X。0~X递增&#xff0c;它们的平方也是递增的&#xff0c;这样我们就可以用二分查找。 我们找出的数的平方是<或者恰好X&#xff0c;所以把0~X的平方分为<X …...

汽车建模用什么软件最好?汽车建模渲染建议!

在汽车建模和渲染领域&#xff0c;选择合适的软件对于实现精确的设计与高质量的视觉效果至关重要。那么不少的汽车设计师如何选择合适的建模软件与渲染方案呢&#xff0c;一起来简单看看吧&#xff01; 一、汽车建模用软件推荐 1、Alias Autodesk旗下的Alias系列软件是汽车设…...

蘑菇分类识别数据集(猫脸码客 第222期)

蘑菇分类识别文本/图像数据集 蘑菇&#xff0c;作为一种广泛分布于全球的真菌&#xff0c;隶属于伞菌目伞菌亚门蘑菇科蘑菇属&#xff0c;拥有众多别名&#xff0c;如白蘑菇、洋蘑菇等。其不仅是世界上人工栽培最广泛、产量最高、消费量最大的食用菌品种之一&#xff0c;还在许…...

长短期记忆网络(Long Short-Term Memory,LSTM)

简介&#xff1a;个人学习分享&#xff0c;如有错误&#xff0c;欢迎批评指正。 长短期记忆网络&#xff08;Long Short-Term Memory&#xff0c;简称LSTM&#xff09;是一种特殊的循环神经网络&#xff08;Recurrent Neural Network&#xff0c;简称RNN&#xff09;架构&#…...

WHAT - 引入第三方组件或项目使用需要注意什么

目录 1. 功能匹配2. 社区与维护3. 兼容性4. 性能5. 易用性6. 安全性7. 授权和许可证8. 国际化支持9. 依赖性10. 未来维护 在前端开发过程中引入第三方组件或项目时&#xff0c;应该从以下几个方面进行考虑&#xff0c;以确保引入的组件能够有效解决问题并适合长期维护&#xff…...

原生鸿蒙操作系统HarmonyOS NEXT(HarmonyOS 5)正式发布

华为于10月22日19:00举办“原生鸿蒙之夜暨华为全场景新品发布会”。此次发布会推出全新的原生鸿蒙操作系统HarmonyOS NEXT&#xff08;HarmonyOS 5&#xff09;以及nova 13、WATCH Ultimate、MatePad Pro等新品。 据介绍&#xff0c;此前已经发布过的鸿蒙系统&#xff0c;由于系…...

WindTerm配置快捷键Ctrl+C和Ctrl+V

WindTerm配置快捷键CtrlC和CtrlV 平时使用ssh和sftp连接的时候&#xff0c;经常使用windterm&#xff0c; 但是windterm里面找不到相关的快捷键设置&#xff0c; 因为操作习惯&#xff0c;想把CtrlC和CtrlV分别配置为复制和粘贴&#xff0c;其他的快捷键操作可以按照该方法进…...

AOP学习

corol调用serverce不在是直接调用的是调用底层代理对象&#xff0c;由代理对象统一帮我们处理 AOP常见概念 通知类型 切面顺序...

【ubuntu18.04】ubuntu18.04升级cmake-3.29.8及还原系统自带cmake操作说明

参考链接 cmake升级、更新&#xff08;ubuntu18.04&#xff09;-CSDN博客 升级cmake操作说明 下载链接 Download CMake 下载版本 下载软件包 cmake-3.30.3-linux-x86_64.tar.gz 拷贝软件包到虚拟机 cp /var/run/vmblock-fuse/blockdir/jrY8KS/cmake-3.29.8-linux-x86_64…...

利用Docker搭建一套Mycat2+MySQL8一主一从、读写分离的最简单集群(保姆教程)

文章目录 1、Mycat介绍1.1、mycat简介1.2、mycat重要概念1.3、Mycat1.x与Mycat2功能对比1.2、主从复制原理 2、前提准备3、集群规划4、安装和配置mysql主从复制4.1、master节点安装mysql8容器4.2、slave节点安装mysql8容器4.2、配置主从复制4.3、测试主从复制配置 5、安装mycat…...

算法——python实现堆排序

文章目录 堆排序二叉树堆堆排序的过程&#xff1a;代码实现python中的heapq模块 堆排序 二叉树 关于二叉树的操作&#xff0c;其实核心就是 父节点找子节点&#xff0c;子节点找父节点 如果要将二叉树存储到队列中&#xff0c;就需要找出 父子节点之间的规律&#xff1a; 父…...

uniapp-components(封装组件)

<myitem></myitem> 在其他类里面这样调用。...

avue-crud组件,输入框回车搜索问题

crud组件&#xff0c;输入框回车搜索问题。 文档是并没有标注&#xff0c;实际上已经具备此功能。 需要在curd的option增加属性 searchEnter: true 即可实现输入内容后回车搜索。 avue的一些踩坑记录 - 前端小小菜 - 博客园...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...