机器学习在聚合物及其复合材料中的应用与实践
在当前的工业和科研领域,聚合物及其复合材料因其卓越的物理和化学性能而受到广泛关注。这些材料在航空航天、汽车制造、能源开发和生物医学等多个行业中发挥着至关重要的作用。随着材料科学的发展,传统的实验和理论分析方法已逐渐无法满足新材料研发的需求,特别是在材料性能预测、结构设计优化和制造过程控制等方面。因此,寻找一种高效、准确且创新的研究方法变得尤为迫切。
近年来,机器学习技术以其强大的数据处理能力和模式识别优势,在聚合物及其复合材料的研究中显示出巨大的潜力。通过机器学习,研究人员能够从大量实验数据中提取有价值的信息,预测材料性能,优化设计参数,并实现制造过程的智能化控制。这些技术的应用不仅能够加速新材料的研发进程,还能提高材料的性能和可靠性,降低生产成本。然而,机器学习在聚合物及其复合材料领域的应用仍面临诸多挑战,包括数据的收集与预处理、特征选择、模型构建、性能评估以及结果的可解释性等。为了克服这些挑战,需要对机器学习的基本理论、算法模型及其在材料科学中的具体应用有深入的了解和掌握。
本专题培训课程“机器学习在聚合物及其复合材料中的应用与实践”旨在为材料科学领域的研究人员、工程师和学生提供一个全面的学习平台。通过本课程,学员将学习到如何将机器学习技术应用于聚合物及其复合材料的研究中,包括数据机理协同驱动的机器学习方法、常用机器学习模型的构建与评估、以及 SCI 文章写作与科研指导等内容。通过理论讲解、实例分析和实际操作相结合的方式,帮助学员掌握机器学习在复合材料科学研究中的关键技能,为未来的科研和工程实践打下坚实的基础。
适合材料科学、电力工业、航空航天科学与工程、有机化工、无机化工、建筑科学与工程、自动化技术、工业通用技术、汽车工业、金属学与金属工艺、机械工业、船舶工业等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。
机器学习在聚合物及其复合材料中的应用与实践
研究背景与机器学习基础模型介绍
1.机器学习在先进复合材料中的应用概述
2.机器学习用于聚合物及其复合材料研究的流程
3.数据机理协同驱动机器学习方法概述
4.基于物理机理的能量等效原理在纤维增强复合材料性能研究中的应用
5.数据机理协同驱动机器学习算法模型构建介绍
6.常用机器学习模型入门介绍
实例:展示不同的机器学习算法(如 BP 神经网络、SVR、CNN、DTR、RF)在复合材料性能预测中的应用,以及如何利用机器学习模型预测复合材料在不同温度下的力学性能
材料力学性能研究中应用机器学习模型
1.机器学习虚拟环境的搭建及所需库的安装
2.机器学习回归与预测的区别和联系
3.聚合物及其复合材料数据收集与数据预处理
实例:以 PBO 为例,讲解如何进行有效的数据清洗和预处理,以提高模型的预测准确性。
4.聚合物及其复合材料机器学习特征工程与选择
(1)递归特征消除(RFE)与皮尔逊相关系数
(2)输入特征综合选取
实例:以 POM 为例,讨论特征选择、特征工程在提高模型性能中的作用,以及如何结合物理机理进行特征选择。
5.常用机器学习模型用于聚合物及其复合材料力学性能研究
(1)BP 神经网络
(2)支持向量回归(SVR)
(3)卷积神经网络(CNN)
(4)决策树回归(DTR)
(5)随机森林(RF)
实例:以纤维增强热塑性复合材料为例,使用物理基础的能量等效原理和机器学习算法来建立复合材料的力学性能模型,预测其应力应变曲线并进行模型比较
6.机器学习模型评估
(1)回归模型中的评价指标(MSE、RMSE、MAE 和 R 2 )
(2)小提琴图绘制及评估
实例:以 PBO 为例,比较不同模型的性能并选择最佳模型
7.可解释性机器学习方法—SHAP
(1)SHAP 理论基础,介绍 SHAP 值在复合材料力学性能预测中的
应用,以及如何利用 SHAP 值进行模型解释和特征重要性分析
(2)计算和解释 SHAP 值
实例:以 PBO 为例,解释各输入特征对预测结果的影响
8.机器学习数据集及其对预测结果的影响
实例:以 PBO 为例,讨论数据集的质量和规模对模型预测性能的影响,以及如何构建和优化数据集
SCI 文章写作与科研指导
- 应用机器学习研究复合材料力学性能的 SCI 论文案例解析
参考文献:Theory-inspired machine learning for stress–strain curve prediction
of short fiber-reinforced composites with unseen design space
(1)论文应用机器学习研究的创新点分析
(2)特征选取与数据预处理方法
(3)使用的模型结构与构建
(4)机器学习模型性能评估
(5)机器学习结果可视化
2.SCI 论文撰写规范与创新思路
3.先进复合材料发展趋势与创新研究展望 4.论文写作互动环节
由来自全国知名高校副教授,省部级人才带领团队讲授。长期从事先进复合材料极端力学性能和基于机器学习的表征预测研究,主持国家级或省部级项目 10 余项,发表 SCI 论文 40 余篇,其中发表在多个中科院一区 TOP 期刊;授权国家发明专利 9 项;荣获人才类、学术类及荣誉类各级别奖励 10 余项。团队导师担任国际期刊编委、SCI 期刊 Polymer International 客座编辑、核心期刊专家委员会委员以及 20 余个 SCI 期刊审稿人
-
综合性课程内容:涵盖了从机器学习基础模型介绍到实际应用案例的全面内容,模型构建、数据预处理、特征工程、模型评估等。通过多个实例演示如何将机器学习技术应用于聚合物及其复合材料的研究,强调理论与实践的结合。
-
技术深度:深入探讨了数据机理协同驱动的机器学习方法,以及如何结合物理机理进行特征选择和模型构建。
-
算法多样性:介绍了多种机器学习算法,如 BP 神经网络、SVR、CNN、DTR、RF 等,并展示了它们在复合材料性能预测中的应用。
-
模型评估与优化:详细讲解了如何评估机器学习模型的性能,包括评价指标和可视化方法,以及如何通过数据集的构建和优化来提高预测准确性。
-
可解释性方法:介绍了 SHAP(SHapley Additive exPlanations)方法,这是一种可解释性机器学习方法,用于解释模型预测和特征重要性分析。
相关文章:

机器学习在聚合物及其复合材料中的应用与实践
在当前的工业和科研领域,聚合物及其复合材料因其卓越的物理和化学性能而受到广泛关注。这些材料在航空航天、汽车制造、能源开发和生物医学等多个行业中发挥着至关重要的作用。随着材料科学的发展,传统的实验和理论分析方法已逐渐无法满足新材料研发的需…...
用大模型或者预训练模型对图片进行OCR
背景:使用大模型或者预训练模型(比如来自huggingface上的模型)对图片进行OCR,并将识别结果标记在图片原文的下方。 愿我们终有重逢之时,而你还记得我们曾经讨论的话题。 QQ group 868373192 QQ second group 277356808 要使用预训练模型对图片进行OCR(光学字符识别)…...

如何使用的是github提供的Azure OpenAI服务
使用的是github提供的Azure OpenAI的服务gpt-4o 说明:使用的是github提供的Azure OpenAI的服务,可以无限薅羊毛。开源地址 进入: 地址 进入后点击 右上角“Get API key”按钮 点击“Get developer key” 选择Beta版本“Generate new to…...

elementUI进度条el-progress不显示白色
效果图 通过设置百分比为100,动态修改进度条的宽度完成 <template><div class"myProgressBox"><div class"index">{{ index }}</div><div class"typeTitle">{{ typeTitle }}</div><div class"twoP…...

学习笔记——路由——IP组播-PIM(协议无关组播)-概述/PIM模式
八、PIM(协议无关组播) 1、前言 在单播中,是一对一的模型,路由器将IP数据包发往目标地址,因此,单播路由器不用关心发送数据包得源地址。而组播数据流量由组播产生,发向一组接收者,那们组播路由器如何这道…...
TCP 协议学习
一、引言 在当今的网络通信世界中,TCP(Transmission Control Protocol,传输控制协议)是最为重要的协议之一。它为各种网络应用提供了可靠的、有序的数据传输服务,是互联网通信的基石。无论是网页浏览、电子邮件发送、…...
python3的基本数据类型:String(字符串)
一. 简介 本文简单学习了一下 python3中的一种数据类型: String(字符串)。 Python中的String类型是一种用于表示文本数据的数据类型。 它可以包含字母、数字、符号等字符,用于存储文本信息。 二. python3的基本数据类型&…...

面试总结(2024/10/16)
面试总结(2024/10/16) 面试11.闭包2.promise3.全局数据的保存4.多模板切换,布局,系统主题颜色5.同一个搜索,不同的搜索条件,输入框不同的校验方法6.自定义一个组件,包括哪些属性7.多个父组件之间…...

从图像识别到聊天机器人:Facebook AI的多领域应用
随着人工智能技术的快速发展,Facebook已在多个领域内广泛应用AI技术,以提升用户体验、提高效率并推动创新。从图像识别到聊天机器人,Facebook的AI应用涵盖了社交媒体的方方面面,下面我们将深入探讨这些应用的具体实现及其对用户生…...

linux中级(NFS服务器)
NFS:用于在NNIX/Linux主机之间进行文件共享的协议 流程:首先服务端开启RPC服务,并开启111端口,服务器端启动NFS服务,并向RPC注册端口信息,客户端启动RPC,向服务器RPC服务请求NFS端口࿰…...

微软主动出击,“钓”出网络钓鱼者
微软正采取一种巧妙的策略来对抗网络钓鱼行为者,其手段是通过访问Azure平台创建高度仿真的蜜罐租户,以此作为诱饵,吸引网络犯罪分子进入,进而收集他们的相关信息。 凭借所收集的数据,微软能够绘制出恶意基础设施的地图…...

Xcode16 编译运行YYCache iOS18 sqlite3_finalize 闪退问题解决方案
问题原因 升级Xcode 16 之后,真机运行APP,发现会有Crash,崩溃堆栈线上Crash 在 YYCache 之中。如下图所示 崩溃堆栈如下: * thread #1, queue com.apple.main-thread, stop reason signal SIGABRTframe #0: 0x00000001d9391…...

Kafka-Windows搭建全流程(环境,安装包,编译,消费案例,远程连接,服务自启,可视化工具)
目录 一. Kafka安装包获取 1. 官网地址 2. 百度网盘链接 二. 环境要求 1. Java 运行环境 (1) 对 java 环境变量进行配置 (2) 下载完毕之后进行解压 三. 启动Zookeeper 四. 启动Kafka (1) 修改Conf下的server.properties文件,修改kafka的日志文件路径 (2)…...
django模板相关配置
模板引擎配置 Django支持多种模板引擎,最常用的是Django自带的模板引擎和Jinja2模板引擎。模板引擎的配置主要在settings.py文件中的TEMPLATES列表中进行。 BACKEND:指定模板引擎。例如,BACKEND: django.template.backends.django.DjangoTe…...
MongoDB等保限制下的连接认证问题
目录 一、问题描述 二、解决方案 三、代码示例 四、拓展知识 一、问题描述 用户调整用户连接认证机制以满足等保要求,调整后程序连接mongodb失败。数据库日志报错如下: {"t":{"$date":"2024-10-10T14:39:07.825+08:00"},"s":&q…...

2024 睿抗机器人开发者大赛(RAICOM)-【网络安全】CTF 部分WP
文章目录 一、前言二、MICS你是黑客么循环的压缩包Goodtime 三、WEBpy 四、Crypto变异凯撒RSAcrypto3 一、前言 WP不完整,仅供参考! 除WEB,RE,PWN外,其余附件均已打包完毕 也是一个对MISC比较友好的一个比赛~ 123网…...

idea 无法输入中文 快速解决
idea在某些情况会出现无法输入中文的情况,我们不去深究内部原因,直接上解决方案: 1、点击菜单help->Edit Custom VM Options 2、最后一行,追加: -Drecreate.x11.input.methodtrue 、 3、重启...

掌握ElasticSearch(五):查询和过滤器
一、查询和过滤器的区别 在 Elasticsearch 中,查询(Query)和过滤器(Filter)是用于检索和筛选数据的重要组成部分。它们虽然都能用来查找文档,但在性能和用法上有所不同。下面详细介绍查询和过滤器的概念以…...

自学[vue+SpringCloud]-012-SpringCloud工程发送邮件
文章目录 前言一、配置QQ邮箱1.1 设置1.2 获取授权码 二、服务发送邮件2.1 引入依赖包2.2 新建AlarmMessageDto2.3 增加controller代码2.4 main方法测试 总结 前言 skywalking监控通过webhook调用SpringCloud服务接口,接口中发送告警邮件。 一、配置QQ邮箱 1.1 设…...

STM32通信协议-I2C
目录 一,IC2的协议规则 I2C总线是PHILIPS公司开发的两线式串行总线,I2C总线主要解决了单片机一对多通信的问题 两根通信线:SCL,SDA,同步,半双工通信,支持数据应答机制,支持总线挂载多设备。 …...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...