make_blobs函数
make_blobs
是 scikit-learn
库中用于生成聚类(或分类)数据集的函数。它通常用于生成多个高斯分布的簇状数据,以便进行分类或聚类算法的测试和验证。make_blobs
非常灵活,可以控制簇的数量、样本数量、每个簇的标准差、中心点等参数。
函数原型
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)
参数说明
-
n_samples:生成的样本数量(默认 100)。可以是整数(总样本数),也可以是列表(每个簇的样本数)。
- 例如:
n_samples=300
表示生成 300 个样本,或者n_samples=[100, 200, 50]
分别为每个簇生成的样本数量。
- 例如:
-
n_features:每个样本的特征数(默认 2)。表示每个生成的样本有多少个特征(即维度)。
- 例如:
n_features=2
生成二维数据,可以在平面上画出;n_features=3
生成三维数据。
- 例如:
-
centers:簇的数量,或者簇的中心坐标。可以是整数,表示生成多少个簇,或者是一个数组,指定每个簇的中心点。
- 例如:
centers=3
会随机生成 3 个簇;centers=[[0,0], [1,1], [2,2]]
会在指定坐标上生成簇。
- 例如:
-
cluster_std:每个簇的标准差(默认 1.0),可以是单个浮点数(表示所有簇的标准差相同),也可以是列表,表示每个簇的标准差。
- 例如:
cluster_std=1.0
为所有簇生成的样本点离中心的标准差为 1.0;cluster_std=[1.0, 2.0, 0.5]
表示每个簇的离散程度不同。
- 例如:
-
center_box:中心点生成的范围(默认 (-10.0, 10.0))。用于生成随机簇中心的坐标范围。可以通过调整此参数来控制簇中心的范围。
-
shuffle:是否打乱生成的数据(默认
True
)。在生成数据后,是否对数据进行随机排序。 -
random_state:随机数种子,用于确保每次生成的簇相同。可以是整数(指定种子),
None
(不设置种子,每次生成不同),或np.random.RandomState
对象。
返回值
- X:生成的样本数据(特征矩阵),形状为
(n_samples, n_features)
。 - y:生成的样本标签(簇标签),形状为
(n_samples,)
。
示例
1. 生成简单的 2D 数据集
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成数据集
X, y = make_blobs(n_samples=300, centers=3, n_features=2, random_state=42)# 绘制生成的数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis')
plt.show()
在这个示例中,make_blobs
生成了 300 个二维样本,分为 3 个簇。然后我们使用 Matplotlib 绘制数据集,不同簇以不同颜色显示。
2. 指定簇的中心和标准差
X, y = make_blobs(n_samples=300, centers=[[1, 1], [5, 5], [9, 9]], cluster_std=[0.5, 1.0, 2.0], random_state=42)plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis')
plt.show()
在这个例子中,我们手动指定了 3 个簇的中心,分别为 [1, 1]
、[5, 5]
和 [9, 9]
,同时指定了每个簇的标准差为 0.5、1.0 和 2.0。
3. 生成高维数据
X, y = make_blobs(n_samples=500, centers=4, n_features=3, random_state=42)print(X.shape) # (500, 3)
在这个例子中,生成了 500 个样本,每个样本有 3 个特征(即三维数据)。生成的数据可以用于三维可视化或其他高维数据处理。
4. 用于分类和聚类
make_blobs
常常用于生成聚类或分类问题的数据集,尤其适合在初学者的实验和测试中使用。例如,可以用来测试 K-Means 算法、支持向量机(SVM)分类器等。
总结
make_blobs
是一个非常方便的工具,用于生成模拟的簇状数据。- 它允许我们控制簇的数量、中心、样本数量、标准差等,灵活生成各种聚类数据。
- 在机器学习实验中,它常常用于测试聚类或分类算法。
相关文章:
make_blobs函数
make_blobs 是 scikit-learn 库中用于生成聚类(或分类)数据集的函数。它通常用于生成多个高斯分布的簇状数据,以便进行分类或聚类算法的测试和验证。make_blobs 非常灵活,可以控制簇的数量、样本数量、每个簇的标准差、中心点等参…...

特斯拉Optimus:展望智能生活新篇章
近日,特斯拉举办了 "WE ROBOT" 发布会,发布会上描绘的未来社会愿景,让无数人为之向往。在这场吸引全球无数媒体的直播中,特斯拉 Optimus 人形机器人一出场就吸引了所有观众的关注。从多家媒体现场拍摄的视频可以看出来&…...

基于Leaflet和SpringBoot的全球国家综合检索WebGIS可视化
目录 前言 一、Java后台程序设计 1、业务层设计 2、控制层设计 二、WebGIS可视化实现 1、侧边栏展示 2、空间边界信息展示 三、标注成果展示 1、面积最大的国家 2、国土面积最小的国家 3、海拔最低的国家 4、最大的群岛国家 四、总结 前言 在前面的博文中ÿ…...
【Linux】/usr/share目录
在Linux和类Unix操作系统中,/usr/share 目录是一个用于存放共享数据文件的目录。这个目录遵循Filesystem Hierarchy Standard (FHS),它定义了Linux系统中文件和目录的组织结构。/usr 代表 “user”,而 share 表示这些文件可以被系统上的多个用…...
Java中如何应用序列化 serialVersionUID 版本号呢?
文章目录 示例1:没有 serialVersionUID 的类输出结果:示例2:类修改后未定义 serialVersionUID可能出现的问题:示例3:显式定义 serialVersionUID总结最佳实践推荐阅读文章 为了更好地理解 serialVersionUID 的使用&…...

面部识别技术:AI 如何识别人脸
在科技飞速发展的今天,面部识别技术已经广泛应用于各个领域,从手机解锁到安防监控,从金融支付到门禁系统,面部识别技术正在改变着我们的生活方式。那么,AI 究竟是如何识别人脸的呢?让我们一起来揭开面部识别…...
全面解析文档对象模型(DOM)及其操作(DOM的概念与结构、操作DOM节点、描述DOM树的形成过程、用DOMParser解析字符串为DOM对象)
1. 引言 文档对象模型(DOM)是Web开发中的核心概念,它提供了一种结构化的方法来表示和操作HTML和XML文档。通过DOM,开发者可以动态地访问和更新文档的内容、结构和样式。本文将深入探讨DOM的概念与结构、操作DOM节点的方法、DOM树…...
字符串使用方法:
字符串: -- 拼接字符串 SELECT CONCAT(糯米,啊啊啊撒,删掉); -- 字符长度 SELECT LENGTH(asssssssggg); -- 转大写 SELECT UPPER(asdf); -- 转小写 SELECT LOWER(ASDFG); -- 去除左边空格 SELECT LTRIM( aaaasdrf ); -- 去除右边空格 SELECT RTRIM( aaaasdff ); -- 去除两端…...

想让前后端交互更轻松?alovajs了解一下?
作为一个前端开发者,我最近发现了一个超赞的请求库 alovajs,它真的让我眼前一亮!说实话,我感觉自己找到了前端开发的新大陆。大家知道,在前端开发中,处理 Client-Server 交互一直是个老大难的问题ÿ…...

E/MicroMsg.SDK.WXMediaMessage:checkArgs fail,thumbData is invalid 图片资源太大导致分享失败
1、微信分享报: 2、这个问题是因为图片太大导致: WXWebpageObject webpage new WXWebpageObject();webpage.webpageUrl qrCodeUrl;//用 WXWebpageObject 对象初始化一个 WXMediaMessage 对象WXMediaMessage msg new WXMediaMessage(webpage);msg.tit…...

No.21 笔记 | WEB安全 - 任意文件绕过详解 part 3
(一)空格绕过 原理 Windows系统将文件名中的空格视为空,但程序检测代码无法自动删除空格,使攻击者可借此绕过黑名单限制。基于黑名单验证的代码分析 代码未对上传文件的文件名进行去空格处理,存在安全隐患。相关代码逻…...

咸鱼自动发货 免费无需授权
下载:(两个都可以下,自己选择) https://pan.quark.cn/s/1e3039e322ad https://pan.xunlei.com/s/VO9ww89ZNkEg_Fq1wRr-fk9ZA1?pwd8x9s# 不是闲管家 闲鱼自动发货(PC端) 暂不支持密,免费使…...

Netty核心组件
1.Channel Channel可以理解为是socket连接,在客户端与服务端连接的时候就会建立一个Channel,它负责基本的IO操作(binf()、connect()、rad()、write()等); 1.1 Channel的作用 通过Channel可获得当前网络连接的通道状态…...

Windows中如何安装SSH
主要内容 一、参考资料二、主要过程法一:通过「设置」安装法二:使用 PowerShell进行安装在 Windows 中配置 OpenSSH 服务器过程截图 一、参考资料 Windows10 打开ssh服务,报错“The service name is invalid ” windows开启ssh服务教程 在 W…...

在linux上部署ollama+open-webu,且局域网访问教程
在linux上部署ollamaopen-webu,且局域网访问教程 运行ollamaopen-webui安装open-webui (待实现)下一期将加入内网穿透,实现外网访问功能 本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并使用Op…...

基于大模型的招聘智能体:从创意到MVP
正在考虑下一个 SaaS 创意?以下是我在短短几个小时内从创意到 MVP 的过程。 以下是我将在这篇文章中介绍的内容概述: 为什么这个想法让我产生共鸣我是如何开始构建它的我现在的处境以及我是否会真正推出 获得 SaaS 创意并构建它并不容易。就是这样。 …...

STM32F1+HAL库+FreeTOTS学习19——软件定时器
STM32F1HAL库FreeTOTS学习19——软件定时器 1 软件定时器1.1 FreeRTOS软件定时器简介1.2 FreeRTOS软件定时器服务任务1.3 FreeRTOS软件定时器服命令队列。1.4 软件定时器的状态1.5 复位定时器1.6 软件定时器结构体 2 软件定时器配置3 软件定时器API函数3.1 xTimerCreate()和xTi…...
@RequestBody的详解和使用
RequestBody的详解和使用 提示:建议一定要看后面的RequestBody的核心逻辑源码以及六个重要结论!本文前半部分的内容都是一些基- 本知识常识,可选择性跳过。 声明:本文是基于SpringBoot,进行的演示说明。 基础知识介…...
VMware介绍及常见使用方法
VMware 是一家全球知名的虚拟化和云计算软件提供商。以下是关于 VMware 的详细介绍: 一、主要产品和功能 VMware vSphere 服务器虚拟化平台,允许将物理服务器虚拟化为多个虚拟机(VM)。提供高可用性、资源管理、动态迁移等功能,确保业务的连续性和高效性。通过集中管理控制…...

Deepinteraction 深度交互:通过模态交互的3D对象检测
一.前提 为什么要采用跨模态的信息融合? 点云在低分辨率下提供必要的定位和几何信息,而图像在高分辨率下提供丰富的外观信息。 -->因此必须采用跨模态的信息融合 提出的原因? 传统的融合办法可能会由于信息融合到统一表示中的不太完美而丢失很大一部分特定…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...