N-gram详解
文章目录
- 一、什么是N-gram?
- 二、N-gram的种类
- 三、优缺点
- PS:补充
一、什么是N-gram?
在自然语言处理中,n-gram是一种重要的文本表示方法。n-gram是指给定文本中连续的n个项目,这些项目可以是声音、单词、字符或者像素等。n-gram模型常常用于语言模型,以预测接下来的一个项目(比如一个单词)。
二、N-gram的种类
根据项目个数的不同,n-gram模型可以被分为不同的种类:
-
当 n = 1 n=1 n=1时,称为unigram。比如对于句子 “I love dogs”,unigram就是 “I”, “love”, “dogs”
P ( w i ) = C ( w i ) M P(w_i)=\frac{C(w_i)}{M} P(wi)=MC(wi)M M M: 语料库中的单词总数
e.g.: C ( b a r k s ) M \frac{C(barks)}{M} MC(barks)
-
当 n = 2 n=2 n=2时,称为bigram。对于同样的句子,bigram就是 “I love”, “love dogs”
P ( w i ∣ w i − 1 ) = C ( w i − 1 , w i ) C ( w i − 1... ) P(w_i|w_{i-1})=\frac{C(w_{i-1},w_{i})}{C(w_{i-1 ...})} P(wi∣wi−1)=C(wi−1...)C(wi−1,wi)C ( w i − 1 . . . ) C(w_{i-1}...) C(wi−1...): 是指以 w i − 1 w_{i-1} wi−1 作为第一个词的所有二元词组的总数。在计算二元词组的概率时,我们需要考虑的是 w i − 1 w_{i-1} wi−1 作为第一个词出现的次数,而不仅仅是 w i − 1 w_{i-1} wi−1这个词在整个语料库中出现的次数。
-
当 n = 3 n=3 n=3时,称为trigram。如 “I love dogs” 的trigram为 “I love dogs”。
-
以此类推,你可以得到更高的n-gram模型。
P ( w i ∣ w i − n + 1 , . . . , w i − 1 ) = C ( w i − n + 1 , . . . , w i ) C ( w i − n + 1 , . . . , w i − 1 ) P(w_i|w_{i-n+1},...,w_{i-1})=\frac{C(w_{i-n+1},...,w_i)}{C(w_{i-n+1},...,w_{i-1})} P(wi∣wi−n+1,...,wi−1)=C(wi−n+1,...,wi−1)C(wi−n+1,...,wi)
三、优缺点
优点
它考虑了词与词之间的顺序信息,从而能更好地捕捉到语义信息。
缺点
模型的数据稀疏性问题(随着n的增大,会出现许多从未在训练数据中出现过的n-gram),以及它无法捕捉到更长距离的依赖关系(超过n的范围)。
因此,在实际应用中,n-gram模型通常会与其他模型如词袋模型(Bag of Words)、TF-IDF等结合使用,以获得更好的效果。
PS:补充
处理 未见过的n-gram(unseen n-grams)时的一些平滑技术。
Laplacian (Add-one) 平滑:
-
Unigram:
对于单个词的概率计算,使用加一平滑的方法公式为:
P a d d 1 ( w i ) = C ( w i ) + 1 M + ∣ V ∣ P_{add1}(w_i)=\frac{C(w_i)+1}{M+|V|} Padd1(wi)=M+∣V∣C(wi)+1这里, C ( w i ) C(w_i) C(wi)表示词 w i w_i wi在语料库中出现的次数, M M M是语料库中所有词的总数, ∣ V ∣ |V| ∣V∣是词汇表的大小,也就是不同词的总数。加一平滑通过在每个词的计数中加1来避免某些词的概率为零的情况。
-
Bigram:
对于两个连续词的概率计算,使用加一平滑的方法公式为:P a d d 1 ( w i ∣ w i − 1 ) = C ( w i − 1 , w i ) + 1 C ( w i − 1 ) + ∣ V ∣ P_{add1}(w_i|w_{i-1})=\frac{C(w_{i-1},w_i)+1}{C(w_{i-1})+|V|} Padd1(wi∣wi−1)=C(wi−1)+∣V∣C(wi−1,wi)+1
这里, C ( w i − 1 , w i ) C(w_{i-1}, w_i) C(wi−1,wi)表示词对 ( w i − 1 , w i ) (w_{i-1}, w_i) (wi−1,wi)在语料库中出现的次数, C ( w i − 1 ) C(w_{i-1}) C(wi−1)表示词 w i − 1 w_{i-1} wi−1出现的总次数。通过在词对的计数中加1,避免了某些词对组合的概率为零。
其他平滑方法:
-
Absolute discounting(绝对折扣法):通过从每个非零计数中减去一个常数来重新分配概率质量。
-
Kneser-Ney:一种更复杂的平滑方法,特别适用于处理低频n-gram,考虑了n-gram的出现背景。
这些平滑技术的目的是确保模型能够合理地处理未见过的n-gram,从而提高语言模型在新数据上的表现。
如果觉得这篇文章有用,就给个赞👍和收藏⭐️吧!也欢迎在评论区分享你的看法!
相关文章:
N-gram详解
文章目录 一、什么是N-gram?二、N-gram的种类三、优缺点PS:补充 一、什么是N-gram? 在自然语言处理中,n-gram是一种重要的文本表示方法。n-gram是指给定文本中连续的n个项目,这些项目可以是声音、单词、字符或者像素等。n-gram模型常常用于…...
电路中的电源轨及地的区别和处理
电源轨 VCC 通常代指正电源供电轨。在大多数数字和模拟电路中,VCC代表电路中的正电源端。VCC提供电路所需的正电压,通常是用来驱动晶体管、集成电路。 VDD 相对与VCC的正电源供应,VDD更常用于表示数字电路中的正电源引脚。VDD常见于集成电…...
k8s可以部署私有云吗?私有云部署全攻略
k8s可以部署私有云吗?K8S可以部署私有云。Kubernetes是一个开源的容器编排引擎,能够自动化容器的部署、扩展和管理,使得应用可以在各种环境中高效运行。通过使用Kubernetes,企业可以在自己的数据中心或私有云环境中搭建和管理容器…...
编辑器资源管理器
解释 EditorResMgr 是一个用于在 Unity 编辑器中加载资源的管理器。它通过 Unity 编辑器的 API (AssetDatabase) 进行资源加载,但仅在开发和编辑模式下可用,不能在最终发布的游戏中使用。这种工具通常用来在开发过程中快速加载编辑器中的资源࿰…...
高性能数据分析利器DuckDB在Python中的使用
DuckDB具有极强的单机数据分析性能表现,功能丰富,具有诸多拓展插件,且除了默认的SQL查询方式外,还非常友好地支持在Python、R、Java、Node.js等语言环境下使用,特别是在Python中使用非常的灵活方便。 安装 pip insta…...
IAR全面支持旗芯微车规级MCU,打造智能安全的未来汽车
中国上海,2024年10月18日 — 在全球汽车电子快速发展的今天,IAR与苏州旗芯微半导体有限公司(以下简称“旗芯微”)联合宣布了一项激动人心的合作——IAR Embedded Workbench for Arm 9.60.2版本现已全面支持旗芯微车规级MCU&#x…...
**深入浅出:TOGAF中的应用架构**
摘要: 在企业架构(EA)领域,TOGAF(The Open Group Architecture Framework)是一个广泛应用的框架。本文将带你深入了解TOGAF中的应用架构,帮助你理解其核心概念和实际应用。无论你是初学者还是有…...
Pytorch学习--DataLoader的使用
一、DataLoader简介 DataLoader官网 重要参数:画红框的参数 dataset: 作用:表示要加载的数据集。DataLoader通过该参数从数据集中读取数据。类型:Dataset,即PyTorch定义的Dataset类,用于封装数据并提供数据索引的功…...
代购系统界的“数据大厨”:定制API数据处理,烹饪出美味佳肴
在这个代购的盛宴中,每一位代购者都是一位大厨,他们用数据作为食材,用代码作为烹饪技巧,烹饪出一道道令人垂涎的美味佳肴。今天,就让我们走进代购界“数据大厨”的厨房,看看他们是如何定制API数据处理&…...
二十、Innodb底层原理与Mysql日志机制深入剖析
文章目录 一、MySQL的内部组件结构1、Server层1.1、连接器1.2、查询缓存1.3、分析器1.4、优化器1.5、执行器 2、存储引擎层 二、Innodb底层原理与Mysql日志机制1、redo log重做日志关键参数2、binlog二进制归档日志2.1、binlog日志文件恢复数据 3、undo log回滚日志4、错误日志…...
数据库设计与管理的要点详解
目录 前言1 数据库设计的基础:清晰的事实表1.1 确保数据的一致性和完整性1.2 优化查询性能 2 权限问题与数据问题的区分2.1 确认权限问题2.2 确认数据问题 3 视图与存储过程的合理使用3.1 视图的作用与应用3.2 存储过程的应用与优化 4 数据库操作日志的设计4.1 确保…...
国家科技创新2030重大项目
国家科技创新2030重大项目涵盖多个领域,例如:量子信息、人工智能、深海空间站、天地一体化信息网络、大飞机、载人航天与月球探测、脑科学与类脑研究、健康保障等,这些项目旨在解决制约我国经济社会发展的重大科技瓶颈问题,提升国…...
如何使用 Flutter Local Notifications 插件
如何使用 Flutter Local Notifications 插件 local_notificationsNo longer in development -Flutter plugin for creating notifications项目地址:https://gitcode.com/gh_mirrors/lo/local_notifications 项目介绍 Flutter Local Notifications 是一个为 Flutter 应用程序…...
【openEuler/Centos】yum安装软件报Error: GPG check FAILED【分析根因弄明白,亲测有效不浪费时间】
yum安装软件报Error: GPG check FAILED 环境信息:cat /etc/openEuler-release openEuler release 22.03 (LTS-SP1) 报错信息 The downloaded packages were saved in cache until the next successful transaction. You can remove cached packages by executin…...
实现vuex源码,手写
实现vuex源码,手写 Vuex 是专门为 Vue.js 应用程序开发的状态管理模式 库,它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。 第一步:定义初始化Store类 创建文件夹store/vuex.js 1…...
使用 Python 和 Pandas 处理 Excel 数据:合并单元格示例
引言 在数据处理过程中,我们经常会遇到需要从 Excel 文件中提取和处理数据的情况。本文将通过一个简单的示例,介绍如何使用 Python 的 Pandas 库来读取 Excel 文件,处理其中的合并单元格,并将结果输出到新的 Excel 文件中。(这里的合并是列1提取一个数据,列2提取两个数据…...
Python poetry 虚拟环境
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、Poetry是什么?二、使用步骤1.安装poetry2、初始化poetry3、创建虚拟环境 启动和退出虚拟环境poetry 常用指令总结 一、Poetry是什么? P…...
面试官:你会如何设计QQ中的网络协议?
引言 在设计QQ这道面试题时,我们需要避免进入面试误区。这意味着我们不应该盲目地开展头脑风暴,提出一些不切实际的想法,因为这些想法可能无法经受面试官的深入追问。因此,我们需要站在前人的基础上,思考如何解决这类…...
JVM—类的生命周期
目录 类的生命周期 加载阶段 连接阶段 验证阶段 准备阶段 解析阶段 初始化阶段 面试题1 面试题2 类的生命周期 类的生命周期描述了一个类加载、使用、卸载的整个过程,整体可以分为以下五个阶段。 1. 加载 2. 连接,其中又分为验证、准备、解析三…...
SELinux中的安全标记与强制访问控制
SELinux的安全标记和强制访问控制是如何实现的? SELinux(Security Enhanced Linux)是一个由美国国家安全局(NSA)开发的Linux内核模块,它实现了强制访问控制(MAC)。SELinux通过为系统…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
