当前位置: 首页 > news >正文

LLM - 使用 Neo4j 可视化 GraphRAG 构建的 知识图谱(KG) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142938982

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Neo4j

Neo4j 是一个高性能的图形数据库,允许用户以图形的形式存储和检索数据,这种形式非常适合处理复杂的关系和网络结构,因其在数据关系处理方面的强大能力而广受欢迎,尤其是在社交网络、推荐系统、网络分析等领域。

构建 GraphRAG 的知识图谱,请参考:配置 GraphRAG + Ollama 服务 构建 中文知识图谱 教程(踩坑记录)

  • Doc:https://neo4j.com/docs/apoc/current/

1. 配置 Neo4j 服务

准备 Docker,参考 Docker - Neo4j

docker pull neo4j:5.24.1

启动 Docker (直接启动,同时运行服务):

docker run --network=host --gpus all --rm --name neo4j-apoc \
-e NEO4J_apoc_export_file_enabled=true \
-e NEO4J_apoc_import_file_enabled=true \
-e NEO4J_apoc_import_file_use__neo4j__config=true \
-e NEO4J_PLUGINS=\[\"apoc\"\] \
--volume=[your folder]:[your folder] \
neo4j:5.24.1

或者,进入 Docker,再启动服务:

docker run --network=host --gpus all -it --name neo4j-apoc -e NEO4J_apoc_export_file_enabled=true -e NEO4J_apoc_import_file_enabled=true -e NEO4J_apoc_import_file_use__neo4j__config=true -e NEO4J_PLUGINS=\[\"apoc\"\] --volume=[your folder]:[your folder] neo4j:5.24.1 /bin/bashbin/neo4j start

注意:使用 Neo4j + APOC 版本的 Docker。APOC(Awesome Procedures on Cypher) 是 Neo4j 图数据库的一个插件,提供一组强大的过程和函数,扩展 Cypher 查询语言的功能。参考:Neo4J and APOC

日志:

Installing Plugin 'apoc' from /var/lib/neo4j/labs/apoc-*-core.jar to /var/lib/neo4j/plugins/apoc.jar
Applying default values for plugin apoc to neo4j.conf
2024-10-15 01:40:54.429+0000 INFO  Logging config in use: File '/var/lib/neo4j/conf/user-logs.xml'
2024-10-15 01:40:54.443+0000 INFO  Starting...
2024-10-15 01:40:55.191+0000 INFO  This instance is ServerId{0350f51a} (0350f51a-ef80-414f-b82f-8e4b38fc369f)
2024-10-15 01:40:56.078+0000 INFO  ======== Neo4j 5.24.1 ========
2024-10-15 01:40:58.875+0000 INFO  Anonymous Usage Data is being sent to Neo4j, see https://neo4j.com/docs/usage-data/
2024-10-15 01:40:58.910+0000 INFO  Bolt enabled on 0.0.0.0:7687.
2024-10-15 01:40:59.325+0000 INFO  HTTP enabled on 0.0.0.0:7474.
2024-10-15 01:40:59.326+0000 INFO  Remote interface available at http://localhost:7474/
2024-10-15 01:40:59.328+0000 INFO  id: 3C118963730B6744966FCB5FC5D9D5795B11AD1F791A4DDC113D02D1F926441F
2024-10-15 01:40:59.329+0000 INFO  name: system
2024-10-15 01:40:59.329+0000 INFO  creationDate: 2024-10-15T01:40:57.342Z
2024-10-15 01:40:59.329+0000 INFO  Started.

启动服务:http://[your ip]:7474/browser/,默认账户和密码都是 neo4j,需要修改新密码 xxxxxx,建议 neo4j123 (自定义)。

启动页面,注意,实体和关系都空的,即:

Neo4j

2. 注入知识图谱数据

数据位于:/var/lib/neo4j/data/databases/neo4j,其中 neo4j 是数据库。

读取 GraphRAG 的知识图谱数据,如下:

import os
import pandas as pdrag_dir = "[your folder]/llm/graphrag/ragtest/output/"entities = pd.read_parquet(os.path.join(rag_dir, "create_final_entities.parquet"))
relationships = pd.read_parquet(os.path.join(rag_dir, "create_final_relationships.parquet"))
text_units = pd.read_parquet(os.path.join(rag_dir, "create_final_text_units.parquet"))
communities = pd.read_parquet(os.path.join(rag_dir, "create_final_communities.parquet"))
community_reports = pd.read_parquet(os.path.join(rag_dir, "create_final_community_reports.parquet"))

测试数据:

entities.head(2)
relationships.head(2)
text_units.head(2)
communities.head(2)
community_reports.head(2)

连接服务器:

NEO4J_URI = "neo4j://localhost:7687"
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "xxxxxx"	# 之前修改的密码
NEO4J_DATABASE = "neo4j"  	# 默认
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))

注意:社区版本,不能创建新的 Database 只能使用默认的 neo4j,创建命令 CREATE DATABASE my-database,参考

数据导入函数:

def import_data(cypher, df, batch_size=1000):for i in range(0,len(df), batch_size):batch = df.iloc[i: min(i+batch_size, len(df))]result = driver.execute_query("UNWIND $rows AS value " + cypher, rows=batch.to_dict('records'),database_=NEO4J_DATABASE)print(result.summary.counters)return 

导入 text_units 命令:

#导入text_units
cypher_text_units = """
MERGE (c:__Chunk__ {id:value.id})
SET c += value {.text, .n_tokens}
WITH c, value
UNWIND value.document_ids AS document
MATCH (d:__Document__ {id:document})
MERGE (c)-[:PART_OF]->(d)
"""import_data(cypher_text_units, text_units)

运行成功,日志:

{'_contains_updates': True, 'labels_added': 99, 'relationships_created': 235, 'nodes_created': 99, 'properties_set': 396}

导入 entities 数据的命令:

#导入entities
cypher_entities= """
MERGE (e:__Entity__ {id:value.id})
SET e += value {.human_readable_id, .description, name:replace(value.name,'"','')}
WITH e, value
CALL db.create.setNodeVectorProperty(e, "description_embedding", value.description_embedding)
CALL apoc.create.addLabels(e, case when coalesce(value.type,"") = "" then [] else [apoc.text.upperCamelCase(replace(value.type,'"',''))] end) yield node
UNWIND value.text_unit_ids AS text_unit
MATCH (c:__Chunk__ {id:text_unit})
MERGE (c)-[:HAS_ENTITY]->(e)
"""import_data(cypher_entities, entities)

导入 relationships 数据的命令:

#导入relationships
cypher_relationships = """MATCH (source:__Entity__ {name:replace(value.source,'"','')})MATCH (target:__Entity__ {name:replace(value.target,'"','')})// not necessary to merge on id as there is only one relationship per pairMERGE (source)-[rel:RELATED {id: value.id}]->(target)SET rel += value {.rank, .weight, .human_readable_id, .description, .text_unit_ids}RETURN count(*) as createdRels
"""import_data(cypher_relationships, relationships)

导入 communities 数据的命令:

#导入communities
cypher_communities = """
MERGE (c:__Community__ {community:value.id})
SET c += value {.level, .title}
/*
UNWIND value.text_unit_ids as text_unit_id
MATCH (t:__Chunk__ {id:text_unit_id})
MERGE (c)-[:HAS_CHUNK]->(t)
WITH distinct c, value
*/
WITH *
UNWIND value.relationship_ids as rel_id
MATCH (start:__Entity__)-[:RELATED {id:rel_id}]->(end:__Entity__)
MERGE (start)-[:IN_COMMUNITY]->(c)
MERGE (end)-[:IN_COMMUNITY]->(c)
RETURn count(distinct c) as createdCommunities
"""import_data(cypher_communities, communities)

导入 community_reports 数据的命令:

#导入community_reports
cypher_community_reports = """MATCH (c:__Community__ {community: value.community})
SET c += value {.level, .title, .rank, .rank_explanation, .full_content, .summary}
WITH c, value
UNWIND range(0, size(value.findings)-1) AS finding_idx
WITH c, value, finding_idx, value.findings[finding_idx] as finding
MERGE (c)-[:HAS_FINDING]->(f:Finding {id: finding_idx})
SET f += finding"""
import_data(cypher_community_reports, community_reports)

3. 测试效果

启动 Neo4j 页面,知识图谱可视化,包括 Node labels 和 Relationship types 等功能,即:

数据

其他知识图谱元素的可视化,参考 Neo4j 的文档。

相关文章:

LLM - 使用 Neo4j 可视化 GraphRAG 构建的 知识图谱(KG) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142938982 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Neo4j …...

Linux 环境的搭建方式->远程登录->免密登录

个人主页:Jason_from_China-CSDN博客 所属栏目:Linux系统性学习_Jason_from_China的博客-CSDN博客 所属栏目:Linux知识点的补充_Jason_from_China的博客-CSDN博客 Linux 环境的搭建方式 Linux 环境的搭建主要有三种方式: 直接安…...

react18中的计算属性及useMemo的性能优化技巧

react18里面的计算属性和使用useMemo来提升组件性能的方法 计算属性 实现效果 代码实现 函数式组件极简洁的实现,就这样 import { useState } from "react"; function FullName() {const [firstName, setFirstName] useState("");const [la…...

Python 实现高效的 SM4 大文件加密解密实战指南20241024

Python 实现高效的 SM4 大文件加密解密实战指南 引言 在数据安全领域,使用对称加密算法如SM4进行数据保护非常常见。特别是当处理大文件时,合理的内存和块大小管理以及加密解密效率变得尤为重要。本文将分享如何使用Python进行大文件的SM4加密解密操作&…...

数据结构~红黑树

文章目录 一、红黑树的概念二、红黑树的定义三、红黑树的插入四、红黑树的平衡五、红黑树的验证六、红黑树的删除七、完整代码八、总结 一、红黑树的概念 红黑树是一棵二叉搜索树,他的每个结点增加⼀个存储位来表示结点的颜色,可以是红色或者黑色。通过…...

【ROS GitHub使用】

提示:环境配置为Ubuntu20.04&ROS Noetic 文章目录 前言一、创建工作空间目录二、尝试从GitHub上下载一个源码包,对它进行编译,运行这个源码包1.打开script文件夹,右键文件夹空白区域,选择在中端中打开;…...

批量处理文件权限:解决‘/usr/bin/chmod: Argument list too long’的有效方法

批量处理文件权限:解决‘/usr/bin/chmod: Argument list too long’的有效方法 错误原因解决方案1. 分批处理2. 使用xargs3. 增加ARG_MAX限制4. 使用脚本 结论 在Linux系统中,有时你可能会遇到这样的错误消息:“/usr/bin/chmod: Argument lis…...

数据结构——树——二叉树——大小堆

目录 1>>导言 2>>树 2.1>>树的相关术语 2.2>>树的表示和应用场景 3>>二叉树 3.1>>完全二叉树 3.2>>大小根堆 4>>结语 1>>导言 上篇小编将队列的内容给大家讲完了,这篇要步入新的篇章,请宝…...

Android Junit 单元测试 | 依赖配置和编译报错解决

问题 为什么在依赖中添加了testImplement在build APK的时候还是会报错?是因为没有识别到test文件夹是test源代码路径吗? 最常见的配置有: implementation - 所有源代码集(包括test源代码集)中都有该依赖库.testImplementation - 依赖关系仅在test源代码…...

ffmpeg视频滤镜: 裁剪-crop

滤镜简述 crop官网链接 > FFmpeg Filters Documentation crop滤镜可以对视频进行裁剪&#xff0c;并且这个滤镜可以接受一些变量比如时间和帧数&#xff0c;这样我们实现动态裁剪&#xff0c;从而实现一些特效。 滤镜使用 参数 out_w <string> ..…...

身份证归属地查询接口-在线身份证归属地查询-身份证归属地查询API

接口简介&#xff1a;输入身份证号码可查询到所属地区、出生年日月以及性别。 接口地址&#xff1a;https://www.wapi.cn/api_detail/60/167.html 在线核验&#xff1a;https://www.wapi.cn/icard.html 网站地址&#xff1a;https://www.wapi.cn 返回格式&#xff1a;json,xml,…...

ESP32 S3 怎么开发基于ESP-RTC的音视频实时交互的应用,用语AI陪伴的领域

在ESP32-S3平台上开发基于ESP-RTC的音视频实时交互应用&#xff0c;尤其是在AI陪伴领域&#xff0c;涉及到音视频数据的采集、编码、传输和解码。ESP32-S3 具备较强的处理能力&#xff0c;且拥有丰富的接口和模块支持&#xff0c;可以用来实现这种功能。以下是一个完整的开发方…...

车载测试分享:UDS诊断、ECU刷写、CAN一致性测试、网络通讯测试、CANoe使用、报文解析、问题定位分析

FOTA模块中OTA的知识点&#xff1a;1.测试过程中发现哪几类问题&#xff1f; 可能就是一个单键的ecu&#xff0c;比如升了一个门的ecu&#xff0c;他的升了之后就关不上&#xff0c;还有就是升级组合ecu的时候&#xff0c;c屏上不显示进度条。 2.在做ota测试的过程中&#xf…...

预算不够,怎么跟KOL砍价?(内附砍价模板)

​在当今的数字营销时代&#xff0c;海外红人&#xff08;KOL&#xff09;的影响力不容小觑。他们的一篇帖子、一个视频&#xff0c;甚至是一张照片&#xff0c;都有可能为企业带来巨大的流量和销量。 当企业满怀希望地找到一位粉丝众多、影响力强的KOL&#xff0c;准备洽谈合作…...

C#从零开始学习(GameObject实例)(unity Lab3)

这是书本中第三个unity Lab 在这次实验中,将学习如何使用C#编写代码用unity编写C#代码 GameObject实例 本次将完成的工作 将游戏资产配置在文件夹中创建材质把GameObject变成预制件脚本控制游戏防止球体重叠 将游戏资产配置在文件夹中 Script放代码 Prefabs放预制件 MAteria…...

谷歌地图 | 与 Android 版导航 SDK 集成的最佳实践

谷歌最近宣布了导航 SDK&#xff0c;它可以让您将熟悉的 Google 地图逐向导航体验无缝集成到您的 Android 和 iOS 应用程序中。 这篇博文概述了一些最佳实践&#xff0c;您可以使用这些实践为您的 Android 应用程序使用导航 SDK 构建流畅、一致且可靠的导航体验。 与导航地图…...

什么是 VolTE 中的 Slient Redial?它和 CSFB 什么关系?

目录 1. 什么是 Silent Redial(安静的重拨号)? 2. Silent Redial 信令流程概述 3. 总结 Silent Redial 和 CSFB 啥关系? 博主wx:yuanlai45_csdn 博主qq:2777137742 想要 深入学习 5GC IMS 等通信知识(加入 51学通信),或者想要 cpp 方向修改简历,模拟面试,学习指导都…...

docker 部署单节点的etcd以及 常用使用命令

docker部署etcd $ docker run -d --name etcd-server -p 2379:2379 -p 2380:2380 quay.io/coreos/etcd:v3.5.0 /usr/local/bin/etcd -name my-etcd-1 -advertise-client-urls http://0.0.0.0:2379 -listen-client-urls http://0.0.0.0:2379 -initial-advertise-peer-urls http…...

华为开放式耳机测评,南卡 、华为、Cleer开放式耳机超深度横评

近年来&#xff0c;开放式蓝牙耳机因其独特的设计和优势受到了越来越多消费者的青睐。其实对于开放式耳机&#xff0c;大家都没有一个明确的概念&#xff0c;可能会为了音质的一小点提升而耗费大量的资金&#xff0c;毕竟这是一个无底洞。 作为在过去一年体验过不下20款开放式耳…...

【Power Query】List.Select 筛选列表

List.Select 筛选列表 ——在列表中返回满足条件的元素 List.Select(列表,判断条件) 不是列表的可以转成列表再筛选&#xff0c;例如 Record.ToList 不同场景的判断条件参考写法 (1)单条件筛选 列表中小于50的数字 List.Select({1,99,8,98,5},each _<50) (2)多条件筛…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...