【数据结构初阶】二叉树---堆
二叉树-堆的实现
- 一、树的概念(什么是树)
- 二、二叉树的概念及结构
- 2.1 二叉树的概念
- 2.2 二叉树的性质
- 2.3 二叉树存储结构
- 三、二叉树的顺序结构
- 3.1 堆的概念及结构
- 3.2 堆的向下调整算法
- 3.3堆的创建
- 四、堆的代码实现
- 4.1 堆的初始化
- 4.2 堆的销毁
- 4.3 堆的插入
- 4.4 堆的删除
- 4.5 堆的判空及取堆顶数据
- 4.6 测试
千里之行始于足下,老铁们看到这篇文章一定要认真耐心地看下去哟!
正文开始:
一、树的概念(什么是树)
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。那么为什么把它叫作树呢?是因为它倒挂着就是树的形状,根朝上,叶朝下。
- 树有一个特殊节点,就是根节点,也就是最顶上的没有前驱节点的那个节点
- 除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i
<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱节点,可以有0个或多个后继节点 - 因此,树是递归定义的

ps:树的子树之间是不能有交集的,有交集的就不能称之为树。如下图:

树的基本术语: - 节点的度 :一个节点含有的子树数量
- 叶节点 :度为0的节点,即没有子节点的节点
- 根节点 :没有父节点的节点
- 父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点
- 子结点:一个结点含有的子树的根结点称为该结点的子结点
- 兄弟结点:具有相同父结点的结点互称为兄弟结点
- 层 :根节点定义为第1层,其子节点为第2层,以此类推
- 高度 :从指定节点到叶节点的最长路径的长度
- 森林 :由多棵(两棵及以上)树组成的集合。
二、二叉树的概念及结构
2.1 二叉树的概念
一棵二叉树是节点的一个有限集合,该集合:
- 或者为空
- 或者由一个根结点加上两棵别称为左子树和右子树的二叉树组成

2.2 二叉树的性质
性质1:二叉树的第i层上至多有2i-1(i≥1)个节点
性质2:深度为h的二叉树中至多含有2h-1个节点
性质3:若在任意一棵二叉树中,有n0个叶子节点,有n2个度为2的节点,则必有n0=n2+1
性质4:具有n个节点的满二叉树深为log2(n+1)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:
- 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
- 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
- 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
2.3 二叉树存储结构
二叉树又可以分为顺序存储和链式存储两种:
1.顺序存储:
顺序存储就是使用数组结构来存储,而顺序存储一般只表示完全二叉树,否则会造成空间浪费的现象。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2.链式存储:
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 :
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{struct BinTreeNode* left; // 指向当前结点左孩子struct BinTreeNode* right; // 指向当前结点右孩子BTDataType data; // 当前结点值域
}
三、二叉树的顺序结构
3.1 堆的概念及结构
若有一个集合{k0,k1,k2…k(n-1)},将它所有的元素以完全二叉树的顺序存储形式于一个一维数组中,并满足:{k(i)<=k(2i+1)且k(i)<=k(2i+2)};或{k(i)>=k(2i+1)且k(i)>=k(2i+2)},则称为小堆或大堆。
堆的性质:
- 堆中某个结点的值总是不大于或不小于其父结点的值
- 堆总是一棵完全二叉树

3.2 堆的向下调整算法
给出如下一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int arr[]={27,15,19,18,28,34,65,49,25,37};

3.3堆的创建
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。
- int a[ ] = {1,5,3,8,7,6};

四、堆的代码实现
堆的底层逻辑:动态数组
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <stdlib.h>// 类型定义
typedef int HPDataTpye;typedef struct Heap
{HPDataTpye* arr;int size;// 元素个数int capacity;// 空间容量
}Heap;
//初始化
void HPInit(HP* php);
//交换头尾
void Swap(HPDataType* p1, HPDataType* p2);
//数据向下调整
void AdjustUp(HPDataType* a, int child);
//数据向下调整
void AdjustDown(HPDataType* a, int n, int parent);
//销毁堆
void HPDestroy(HP* php);
//向堆添加数据
void HPPush(HP* php, HPDataType x);
//删除数据
void HPPop(HP* php);
//找堆顶数据
HPDataType HPTop(HP* php);
//判空
bool HPEmpty(HP* php);
4.1 堆的初始化
堆的初始化方式是跟顺序表的初始化是一样的,因为堆使用的是顺序存储:
void HPInit(HP* php)
{assert(php);php->arr=NULL;php->size=php->capacity=0;
}
4.2 堆的销毁
void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}
4.3 堆的插入
堆的插入方式也跟顺序表的差不多,就是将新的节点插入数组的尾部,但是光插入还不行,还要继续调整节点的位置,因为插入节点后有可能使原本的堆变为数组而不是堆了:

具体的代码实现:
//数据向上调整
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;//利用数组下标找到parent的位置while (child > 0)//while(parent>=0)属于歪打正着{if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//插入数据
void HPPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);//将数据插入后进行向上调整
}
4.4 堆的删除
堆的删除删的是堆顶的数据,而删除堆顶的数据就没有想象中的这么简单了。删除堆顶的数据不能直接将其释放掉,若直接释放,根就没有了,只剩下左右两个堆,又要将堆重新建好,代价太大;这时我们应该将堆尾和堆顶数据换位置,再将堆尾的数据释放掉,然后将堆顶的数据向下调整直到重新成堆:

代码实现:
//数据向下调整
void AdjustDown(HPDataType* a, int n, int parent)
{// 先假设左孩子小int child = parent * 2 + 1;while (child < n) // child >= n说明孩子不存在,调整到叶子了{// 找出小的那个孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//删除堆顶
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->arr[0], &php->arr[php->size - 1]);php->size--;AdjustDown(php->arr, php->size, 0);
}
4.5 堆的判空及取堆顶数据
//找堆顶数据
HPDataType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->arr[0];//直接将数组第一个数据返回即可
}
//判空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;//当size等于0时就返回空
}
4.6 测试
#include"Heap.h"
void TestHP01()
{HP hp;HPInit(&hp);int arr[] = { 4,2,8,1,5,6,9,7,3,2 };for (size_t i = 0; i < sizeof(arr) / sizeof(int); i++){HPPush(&hp, arr[i]);}/*while (!HPEmpty(&hp)){printf("%d ", HPTop(&hp));HPPop(&hp);}*/HPDestroy(&hp);
}
int main()
{TestHP01();return 0;
}
调试结果(形成小堆):

相关文章:
【数据结构初阶】二叉树---堆
二叉树-堆的实现 一、树的概念(什么是树)二、二叉树的概念及结构2.1 二叉树的概念2.2 二叉树的性质2.3 二叉树存储结构 三、二叉树的顺序结构3.1 堆的概念及结构3.2 堆的向下调整算法3.3堆的创建 四、堆的代码实现4.1 堆的初始化4.2 堆的销毁4.3 堆的插入…...
Lucas带你手撕机器学习——决策树
一、决策树简介 决策树是一种基本的分类与回归方法,它通过树状结构对数据进行分类或预测。每个内部节点代表一个特征(属性),每个分支代表特征的一个可能值,而每个叶子节点代表一个分类或预测值。由于其直观和易于理解…...
OpenIPC开源FPV之Ardupilot配置
OpenIPC开源FPV之Ardupilot配置 1. 源由2. 问题3. 分析3.1 MAVLINK_MSG_ID_RAW_IMU3.2 MAVLINK_MSG_ID_SYS_STATUS3.3 MAVLINK_MSG_ID_BATTERY_STATUS3.4 MAVLINK_MSG_ID_RC_CHANNELS_RAW3.5 MAVLINK_MSG_ID_GPS_RAW_INT3.6 MAVLINK_MSG_ID_VFR_HUD3.7 MAVLINK_MSG_ID_GLOBAL_P…...
合并数组的两种常用方法比较
在 JavaScript 中,合并数组的两种常用方法是使用扩展运算符 (...) 和使用 push 方法。 使用扩展运算符 this.items [...this.items, ...data.items]; 优点: 易于理解:使用扩展运算符的语法非常直观,表达了“将两个数组合并成一个…...
qt 下载安装
1. 官网地址 https://www.qt.io/ 2. 下载 使用邮箱注册账号,登录,后边安装时也用的到 登录后: 这里需要电话号验证,电话号需要正确的,其他随便填,电话号中国区前需要86, 验证后自动下载 …...
Oracle SQL Developer 同时打开多个table的设置
Oracle SQL Developer 同时打开多个table的设置 工具 》 首选项 》数据库 》对象查看器,勾选 “自动冻结对象查看器窗口”...
NVIDIA发布Nemotron-70B-Instruct,超越GPT-4o和Claude 3.5的AI模型
一、Nemotron-70B-Instruct 是什么 Nemotron-70B-Instruct 是由 NVIDIA 基于 Meta 的 Llama 3.1-70B 模型开发的先进大语言模型(LLM)。该模型采用了新颖的神经架构搜索(Neural Architecture Search,NAS)方法和知识蒸馏…...
死锁(Deadlock)C#
在多线程编程中,死锁(Deadlock)是一种非常常见的问题,通常发生在两个或多个线程相互等待对方持有的锁,导致它们都无法继续执行。要避免死锁,需要了解死锁的四个必要条件以及相应的解决策略。 死锁的形成 …...
前端-基础CSS 知识总结
1.书写位置:title 标签下方添加 style 双标签,style 标签里面书写 CSS 代码。 <title>CSS 初体验</title> <style>/* 选择器 { } */p {/* CSS 属性 */color: red;} </style><p>体验 CSS</p> <link rel="stylesheet" href=…...
最新版本jdbcutils集成log4j做详细sql日志、自动释放连接...等
maven坐标 <!-- MySQL 8 --><dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><version>8.0.33</version></dependency><!-- Druid连接池 --><dependency><groupId&…...
jQuery快速填充非form数据
jQuery快速填充非form数据 先看看jQuery根据name填充form表单数据 <!DOCTYPE html> <html><head><script src"https://code.jquery.com/jquery-3.6.0.min.js"></script> </head><body><form id"myForm">…...
语音语言模型最新综述! 关于GPT-4o背后技术的尝试
近期,大型语言模型(LLMs)在生成文本和执行各种自然语言处理任务方面展现出了卓越的能力,成为了强大的AI驱动语言理解和生成的基础模型。然而,仅依赖于基于文本模态的模型存在显著局限性。这促使了基于语音的生成模型的发展,使其能够更自然、直观地与人类互动。 为了…...
根据用户选择的行和列数据构造数据结构(跨行跨列)
方案一 这段代码的功能是根据用户选择的行和列数据,生成一个适合复制粘贴的字符串表格。代码会先按列的 id 从小到大排序,再根据行列的选择关系将数据按顺序填入表格,每行之间使用换行符分隔,每列之间使用制表符分隔。如果某一行…...
Spark教程5-基本结构化操作
加载csv文件 df spark.read.format("json").load("/data/flight-data/json/2015-summary.json")Schema 输出Schema df.printSchema()使用Schema读取csv文件,以指定数据类型 from pyspark.sql.types import StructField, StructType, Strin…...
内置数据类型、变量名、字符串、数字及其运算、数字的处理、类型转换
内置数据类型 python中的内置数据类型包括:整数、浮点数、布尔类型(以大写字母开头)、字符串 变量名 命名变量要见名知意,确保变量名称具有描述性和意义,这样可以使得代码更容易维护,使用_可以使得变量名…...
Win/Mac/Android/iOS怎麼刪除代理設置?
設置代理設置的主要構成 IP 地址和端口 這些是代理伺服器配置的最基本組件。代理伺服器的IP地址引導互聯網流量,而端口號指定伺服器上的通信通道。 為什麼要刪除代理設置? 刪除代理設置通常是為了解決網路問題、提高速度、恢復安全性或過渡到新的網路…...
数据结构------手撕顺序表
文章目录 线性表顺序表的使用及其内部方法ArrayList 的扩容机制顺序表的几种遍历方式顺序表的优缺点顺序表的模拟实现洗牌算法 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,…...
UDP(用户数据报协议)端口监控
随着网络的扩展,确保高效的设备通信对于优化网络功能变得越来越重要。在这个过程中,端口发挥着重要作用,它是实现外部设备集成的物理连接器。通过实现数据的无缝传输和交互,端口为网络基础设施的顺畅运行提供了保障。端口使数据通…...
【Java小白图文教程】-05-数组和排序算法详解
精品专题: 01.《C语言从不挂科到高绩点》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. 《SpringBoot详细教程》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12789841.html?spm1001.20…...
OpenCV视觉分析之目标跟踪(1)计算密集光流的类DISOpticalFlow的介绍
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 这个类实现了 Dense Inverse Search (DIS) 光流算法。更多关于该算法的细节可以在文献 146中找到。该实现包含了三个预设参数集,以提…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
