当前位置: 首页 > news >正文

计算机毕业设计Python+大模型微博情感分析 微博舆情预测 微博爬虫 微博大数据 舆情分析系统 大数据毕业设计 NLP文本分类 机器学习 深度学习 AI

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

《Python+大模型微博情感分析》开题报告

一、研究背景与意义

随着互联网技术的飞速发展,社交媒体平台已成为人们表达意见、分享情感和交流信息的重要渠道。微博作为中国最具影响力的社交媒体平台之一,每天产生海量的用户生成内容(UGC),这些数据蕴含着丰富的社会舆情和情感倾向。情感分析,作为自然语言处理(NLP)领域的一个重要分支,旨在从文本数据中自动提取和识别主观信息和情感倾向。通过对微博数据进行情感分析,可以深入了解公众对某一事件或话题的态度和情绪,为政府、企业和研究机构提供科学的决策支持。

然而,微博数据的海量性和复杂性给情感分析带来了巨大挑战。传统的情感分析方法在处理大规模数据时效率较低,且准确性有待提升。近年来,随着深度学习技术的快速发展,大模型(如BERT、GPT等)在自然语言处理任务中表现出色,为微博情感分析提供了新的解决方案。Python作为一种高效的编程语言,结合大模型和相应的框架(如Flask或Django),为开发微博情感分析系统提供了极大的便利。

本研究旨在开发一个基于Python和大模型的微博情感分析系统,通过自动化的数据抓取、情感分类和情感趋势分析,实现对微博舆情的实时监控和深度洞察,为政府、企业和学术界提供有价值的参考。

二、研究内容与方法
2.1 研究内容

本研究主要包括以下几个方面:

  1. 数据抓取与预处理:利用Python编写爬虫程序从微博平台抓取用户发布的相关数据,包括微博内容、评论、转发数和点赞数等。对抓取到的数据进行预处理,包括去重、清洗和标准化,以确保数据的准确性和一致性。
  2. 情感分析:采用大模型(如BERT)和先进的情感分析算法(如VADER),对微博文本进行情感评分和分类,判断其是正面、负面还是中性的情感。
  3. 结果展示:使用Flask或Django构建Web应用,将分析结果以可视化形式展示给用户。设计用户交互界面和数据展示模块,通过图表(如柱状图、饼图、趋势图等)展示情感分布、舆情趋势等关键信息。
  4. 系统优化与迭代:根据实际应用中的反馈,持续优化模型以提高准确率。同时,考虑引入新的技术和算法(如多任务学习、持续学习等),进一步提升系统的性能和实用性。
2.2 研究方法
  1. 文献研究:查阅相关文献,了解现有的微博情感分析技术和方法,为系统设计提供理论支持。
  2. 技术选型:选择Python作为开发语言,结合Flask或Django框架、数据库(如MySQL)和NLP库(如jieba、NLTK、TextBlob等)进行开发。
  3. 系统设计与开发:采用模块化设计思想,将系统划分为数据抓取模块、数据预处理模块、情感分析模块和Web展示模块。分别进行开发,并确保各模块之间的协同工作。
  4. 系统测试与优化:对实现的系统进行测试,包括功能测试、性能测试和安全测试等。根据测试结果,对系统进行优化和改进,确保系统的稳定性和可靠性。
三、预期成果与创新点
3.1 预期成果

本研究预期将开发出一个基于Python和大模型的微博情感分析系统,该系统能够自动从微博上获取数据,并进行情感分类和情感趋势分析。通过可视化的方式展示分析结果,为政府、企业和学术界提供有价值的参考。该系统具有较高的应用价值,可以帮助政府和企业及时发现舆情危机,制定应对策略;同时也可以为学术界提供实证数据支持,推动情感分析领域的研究和发展。

3.2 创新点
  1. 大模型的应用:利用BERT等大模型进行情感分析,提高分析的准确性和效率。
  2. 实时情感监控:通过自动化的数据抓取和分析,实现对微博舆情的实时监控和情感趋势分析。
  3. 多维度情感分析:结合微博数据的多个维度(如内容、评论、转发数等),进行全方位的情感分析,提高分析的准确性和全面性。
  4. 用户友好的交互界面:设计用户友好的交互界面和数据展示模块,使得非技术人员也能够轻松查看和分析情感分析结果。
四、研究计划与时间表
  1. 第1-2周:进行文献调研和需求分析,明确系统的功能需求和非功能需求,形成详细的需求规格说明书。
  2. 第3-4周:进行技术选型和系统设计,确定系统的整体架构、功能模块和数据库结构等。
  3. 第5-8周:进行系统开发,实现数据抓取模块、数据预处理模块、情感分析模块和Web展示模块的功能。
  4. 第9-10周:进行系统测试,包括功能测试、性能测试和安全测试等。同时,准备论文撰写和答辩材料。
五、参考文献

由于实际参考文献在此无法直接列出,但相关研究可以参考以下方向和内容:

  1. 基于Python的社交媒体情感分析系统设计与实现。
  2. 微博大数据舆情分析系统的设计与实现。
  3. 大模型在自然语言处理任务中的应用。
  4. 情感分析算法(如VADER、BERT)的原理与应用。

通过上述研究计划,本研究将致力于开发一个高效、准确的微博情感分析系统,为政府、企业和学术界提供有价值的参考。

相关文章:

计算机毕业设计Python+大模型微博情感分析 微博舆情预测 微博爬虫 微博大数据 舆情分析系统 大数据毕业设计 NLP文本分类 机器学习 深度学习 AI

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 《Python大模型微博情感分析…...

CTF--Misc题型小结

(萌新笔记,多多关照,不足之处请及时提出。) 不定时更新~ 目录 密码学相关 文件类型判断 file命令 文件头类型 strings读取 隐写术 尺寸修改 文件头等缺失 EXIF隐写 thumbnail 隐写 文件分离&提取 binwalk foremo…...

深度学习系列——RNN/LSTM/GRU,seq2seq/attention机制

1、RNN/LSTM/GRU可参考: https://zhuanlan.zhihu.com/p/636756912 (1)对于这里面RNN的表示中,使用了输入x和h的拼接描述,其他公式中也是如此 (2)各符号图含义如下 2、关于RNN细节,…...

通过call指令来学习指令摘要表的细节

E8 cw cw 表示E8后面跟随2 字节 (什么数不知道) rel16 指在与指令同一代码段内的相对地址偏移 D ,指向Instruction Operand Encoding 表中的D列, 他告诉我们 操作数1 是一个0FFSET N.S. 在64位模式下,某些指令需要使用“地址覆盖前缀”(address over…...

10分钟使用Strapi(无头CMS)生成基于Node.js的API接口,告别繁琐开发,保姆级教程,持续更新中。

一、什么是Strapi? Strapi 是一个开源的无头(headless) CMS,开发者可以自由选择他们喜欢的开发工具和框架,内容编辑人员使用自有的应用程序来管理和分发他们的内容。得益于插件系统,Strapi 是一个灵活的 C…...

创建插件 DLL 项目

Step 1: 创建插件 DLL 项目 在 Visual Studio 中创建一个新的 DLL 项目&#xff0c;并添加以下文件和代码。 头文件&#xff1a;CShapeBase.h cpp 复制代码 #pragma once #include <afxwin.h> // MFC 必需头文件 #include <string> #include <vector> #i…...

OpenCV双目相机外参标定C++

基于OpenCV库实现双目测量系统外参标定过程。通过分析双目测量系统左右相机拍摄的棋盘格标定板图像&#xff0c;包括角点检测、立体标定、立体校正和畸变校正的步骤&#xff0c;获取左右相机的相对位置关系和姿态。 a.检测每张图像中的棋盘格角点&#xff0c;并进行亚像素级精…...

【GESP】C++一级练习BCQM3055,4位数间隔输出

一级知识点取余、整除运算和格式化输出知识点应用。其实也可以用string去处理&#xff0c;那就属于GESP三级的知识点范畴了&#xff0c;孩子暂未涉及。 题目题解详见&#xff1a;https://www.coderli.com/gesp-1-bcqm3055/ https://www.coderli.com/gesp-1-bcqm3055/https://w…...

纯血鸿蒙的最难时刻才开始

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 纯血鸿蒙(HarmonyOS NEXT)也正式发布了&#xff0c;绝对是一个历史性时刻&#xff0c;但最难的鸿蒙第二个阶段&#xff0c;也就是生态圈的建设&#xff0c;才刚刚开始。 目前&#xff0c;我劝你现在不要升级到鸿蒙…...

记一个mysql的坑

数据库表user&#xff0c; 存在一个name字段&#xff0c;字段为varchar类型 现在user表有这么两条记录: idnameageclass1NULL18一班2lisi20二班 假如我根据下面这一条件去更新&#xff0c;更新成功数据行显示为0 update user set age 19 where age 18 and class “一班”…...

Java中的设计模式:单例模式详解

摘要 单例模式&#xff08;Singleton Pattern&#xff09;是Java中最常用的设计模式之一&#xff0c;属于创建型模式。它的主要目的是确保一个类在系统中只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。 1. 单例模式的定义 单例模式确保一个类只有一个实例&…...

NanoTrack原理与转tensorrt推理

文章目录 前言一、NanoTrack 工作原理二、运行demo与转换tensorrt模型2.1 运行pt模型demo2.2 转onnx模型2.3 转tensorrt模型2.4 运行trt模型推理 三、推理速度对比总结 前言 NanoTrack 是一种轻量级且高效的目标跟踪算法&#xff0c;基于Siamese网络架构&#xff0c;旨在在资源…...

YOLO11改进 | 卷积模块 | 卷积模块替换为选择性内核SKConv【附完整代码一键运行】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 本文给大家带来的教程是将YOLO11的卷积替…...

CentOS进入单用户模式进行密码重置

一、单用户模式介绍 单用户模式是一种特殊的启动模式&#xff0c;主要用于系统维护和故障排除。在单用户模式下&#xff0c;系统以最小化的状态启动&#xff0c;只有最基本的系统服务会被加载&#xff0c;通常只有root用户可以登录。这种模式提供了对系统的完全控制&#xff0…...

bitpoke- mysql-operator cluster

sidecar版本只支持到8.0.35&#xff0c;35可以支持到mysql8.0.35 . 默认镜像是5.7的。需要自己打sidecar的镜像&#xff1a; # Docker image for sidecar containers # https://github.com/bitpoke/mysql-operator/tree/master/images/mysql-operator-sidecar-8.0 # 参考5…...

第5课 基本数据类型

一、数据类型的诞生 在Python的世界里&#xff0c;万物皆对象&#xff0c;每个对象都有自己的若干属性&#xff0c;每一个属性都能描述对象的某一个方面。就像我们每个人&#xff0c;都有自己的身高、年龄、姓名、性别等很多方面的信息&#xff0c;这里的身高、年龄、姓名、性…...

OceanBase 首席科学家阳振坤:大模型时代的数据库思考

2024年 OceanBase 年度大会 即将于10月23日&#xff0c;在北京举行。 欢迎到现场了解更多“SQL AI ” 的探讨与分享&#xff01; 近期&#xff0c;2024年金融业数据库技术大会在北京圆满举行&#xff0c;聚焦“大模型时代下数据库的创新发展”议题&#xff0c;汇聚了国内外众多…...

国内知名的几个镜像源

在国内&#xff0c;有许多常用的Python库镜像源可以帮助加速库的下载。以下是几个知名的镜像源&#xff1a; 1. 清华大学TUNA协会 网址: https://pypi.tuna.tsinghua.edu.cn/simple命令示例:pip install numpy --index-url https://pypi.tuna.tsinghua.edu.cn/simple2. 阿里云…...

海外著名新闻门户媒体软文发稿之华盛顿独立报-大舍传媒

在当今全球化的时代&#xff0c;信息传播的速度和范围达到了前所未有的程度。对于企业和个人而言&#xff0c;如何在国际舞台上有效地展示自己、传递信息&#xff0c;成为了一项至关重要的任务。而海外媒体发稿&#xff0c;特别是通过像华盛顿独立报这样的知名新闻门户&#xf…...

青少年编程与数学 02-002 Sql Server 数据库应用 13课题、函数的编写

青少年编程与数学 02-002 Sql Server 数据库应用 13课题、函数的编写 课题摘要:一、函数内置函数用户定义的函数 (User-Defined Functions, UDFs)使用示例主要特点 二、内置函数数学函数&#xff08;Mathematical Functions&#xff09;字符串函数&#xff08;String Functions…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...