利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)
代码示例:
# 激活字典,用于保存每次的中间特征
activation = {}# 将 forward_hook 函数定义在 upsample_v2 外部
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hookdef upsample_v2(in_channels, out_channels, upscale, kernel_size=3):layers = []# Define mid channel stages (three times reduction)mid_channels = [256, 128, 64] # 512 32 32 -> 256 64 64 -> 128 128 128 -> 64 256 256 -> 2 256 256scale_factor_per_step = upscale ** (1/3) # Calculate the scaling for each stepcurrent_in_channels = in_channels# Upsample and reduce channels in 3 stepsfor step, mid_channel in enumerate(mid_channels):# Conv layer to reduce number of channelsconv = nn.Conv2d(current_in_channels, mid_channel, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)# ReLU activationrelu = nn.ReLU()layers.append(relu)# Upsampling layerup = nn.Upsample(scale_factor=scale_factor_per_step, mode='bilinear', align_corners=True)layers.append(up)layers[-1].register_forward_hook(forward_hook(f'step_{step}'))# Update current in_channels for the next layercurrent_in_channels = mid_channelconv = nn.Conv2d(current_in_channels, out_channels, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)return nn.Sequential(*layers)
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hook
forward_hook布置了抓取函数。其中,module代表你下面勾的那一层,input代表那一层的输入,output定义那一层的输出,我们常常只使用output。
layers[-1].register_forward_hook(forward_hook(f'step_{step}'))
这里定义了我需要捕获的那一层,layers[-1]代表我要捕获当前layers的最后一层,即上采用层,由于循环了三次,所以最后勾取的应当是三份中间层输出。
相关文章:
利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)
代码示例: # 激活字典,用于保存每次的中间特征 activation {}# 将 forward_hook 函数定义在 upsample_v2 外部 def forward_hook(name):def hook(module, input, output):activation[name] output.detach()return hookdef upsample_v2(in_channels, o…...
CTF-RE 从0到N: S盒
S盒(Substitution Box) 是密码学中的一种替换表,用于对输入数据进行非线性变换,以增加加密过程的复杂性。它主要用于对称加密算法中(例如AES、DES),作为加密轮次的一部分,对输入字节…...
MT-Pref数据集:包含18种语言的18k实例,涵盖多个领域。实验表明它能有效提升Tower模型在WMT23和FLORES基准测试中的翻译质量。
2024-10-10,由电信研究所、里斯本大学等联合创建MT-Pref数据集,它包含18种语言方向的18k实例,覆盖了2022年后的多个领域文本。通过在WMT23和FLORES基准测试上的实验,我们展示了使用MT-Pref数据集对Tower模型进行对齐可以显著提高翻…...
【C++ 真题】B2099 矩阵交换行
矩阵交换行 题目描述 给定一个 5 5 5 \times 5 55 的矩阵(数学上,一个 r c r \times c rc 的矩阵是一个由 r r r 行 c c c 列元素排列成的矩形阵列),将第 n n n 行和第 m m m 行交换,输出交换后的结果。 输入格式 输入共 6 6 6 …...
AAPL: Adding Attributes to Prompt Learning for Vision-Language Models
文章汇总 当前的问题 1.元标记未能捕获分类的关键语义特征 如下图(a)所示, π \pi π在类聚类方面没有显示出很大的差异,这表明元标记 π \pi π未能捕获分类的关键语义特征。我们进行简单的数据增强后,如图(b)所示,效果也是如…...
MySQLDBA修炼之道-开发篇(一)
三、开发基础 1. 数据模型 1.1 关系数据模型介绍 关于NULL 如果某个字段的值是未知的或未定义的,数据库会提供一个特殊的值NULL来表示。NULL值很特殊,在关系数据库中应该小心处理。例如查询语句“select*from employee where 绩效得分<85 or>绩…...
Spring MVC 知识点全解析
Spring MVC 知识点全解析 Spring MVC 是一个基于 Java 的请求驱动的 Web 框架,属于 Spring 框架的一部分,广泛用于构建企业级 Web 应用程序。本文将详细阐述 Spring MVC 的核心知识点,包括其工作原理、关键组件、配置、请求处理、数据绑定、…...
python 基于FastAPI实现一个简易的在线用户统计 服务
简易在线用户统计服务 概述 这是一个基于Python的FastAPI框架实现的服务,用于统计客户端的心跳信息,并据此维护在线用户列表以及记录活跃用户数。 功能特性 心跳接收:接受来自客户端的心跳包,以更新客户端的状态。在线用户统计…...
glibc中xdr的一个bug
本人在64位linux服务器上(centos7),发现xdr_u_long这个函数有个bug,就是数字的范围如果超过unsigned int的最大值(4294967295)时,xdr_u_long失败。 这个场景主要用在unix时间戳上面,比如一款软件,设置有效期为100年。…...
Android Framework定制sim卡插入解锁pin码的界面
文章目录 手机设置SIM卡pin码一、安卓手机二、苹果手机 Android Framework中SIM卡pin码代码定位pin码提示文本位置定位pin码java代码位置 定制pin码framework窗口数字按钮 手机设置SIM卡pin码 设置 SIM 卡 PIN 码可以提高手机的安全性,防止他人在未经授权的情况下使…...
cc2530 Basic RF 讲解 和点灯讲解(1_1)
1. Basic RF 概述 Basic RF 是 TI 提供的一套简化版的无线通信协议栈,旨在帮助开发者快速搭建无线通信系统。它基于 IEEE 802.15.4 标准的数据包收发,但只用于演示无线设备数据传输的基本方法,不包含完整功能的协议。Basic RF 的功能限制包括…...
Android H5页面性能分析策略
文章目录 引言一、拦截资源加载请求以优化性能二、通过JavaScript代码监控资源下载速度三、使用vConsole进行前端性能调试四、使用Chrome DevTools调试Android端五、通过抓包分析优化网络性能六、总结 引言 在移动应用开发中,H5页面的性能直接影响到用户体验。本文…...
【前端面试】Typescript
Typescript面试题目回答 Typescript有哪些常用类型? Typescript的常用类型包括: 基本类型:boolean(布尔类型)、number(数字类型)、string(字符串类型)。特殊类型:nul…...
程序语言的内存管理:垃圾回收GC(Java)、手动管理(C语言)与所有权机制(Rust)(手动内存管理、手动管理内存)
文章目录 程序语言的内存管理:垃圾回收、手动管理与所有权机制引言一、垃圾回收机制(GC)(Java)1. 什么是垃圾回收机制2. 垃圾回收的工作原理3. 优点与缺点4. 示例代码 二、手动管理内存的分配和释放(C语言&…...
研究生论文学习记录
文献检索 检索论文的网站 知网:找论文,寻找创新点paperswithcode :这个网站可以直接找到源代码 直接再谷歌学术搜索 格式:”期刊名称“ 关键词 在谷歌学术搜索特定期刊的关键词相关论文,可以使用以下几种方法&#…...
毕业设计选题:基于Django+Vue的图书馆管理系统
开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 系统首页 图书馆界面 图书信息界面 个人中心界面 后台登录界面 管理员功能界面 用户…...
#网络安全#NGSOC与传统SOC的区别
NGSOC是Next Generation Security Operation Center(下一代安全运营中心)的缩写。 NGSOC安全运营服务基于态势感知与安全运营平台来开展监测分析等一系列的服务工作,旨在通过专业、高效的运营服务工作,帮助用户尽可能发挥NGSOC作…...
GCN+BiLSTM多特征输入时间序列预测(Pytorch)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GCNBiLSTM多特征输入时间序列预测(Pytorch) 可以做风电预测,光伏预测,寿命预测,浓度预测等。 Python代码,基于Pytorch编写 1.多特征输入单步预测…...
LinkedList和链表之刷题课(下)
1. 给定x根据x把链表分割,大的结点放在x后面,小的结点放在x前面 题目解析: 注意此时的pHead就是head(头节点的意思) 基本上就是给定一个链表,我们根据x的值来把这个链表分成俩部分,大的那部分放在x后面,小的那部分放在x前面,并且我们不能改变链表本来的顺序,比如下面的链表,我…...
ollama 在 Linux 环境的安装
ollama 在 Linux 环境的安装 介绍 他的存在在我看来跟 docker 的很是相似,他把市面上已经存在的大语言模型集合在一个仓库中,然后通过 ollama 的方式来管理这些大语言模型 下载 # 可以直接通过 http 的方式吧对应的 shell 脚本下载下来,然…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
