【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界
【1】OFDM Radar Algorithms in Mobile Communication Networks pp34
文章目录
如何根据 d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n}c_0}{2\Delta f N_{\mathrm{Per}}} d^=2ΔfNPern^c0和 var [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^]≥(N2−1)N6σN2推出 var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
要从给定的距离估计公式和频率估计的方差下界推导出距离估计的方差下界,我们可以按照以下步骤进行:
1. 频率和距离之间的关系
已知距离估计的公式为:
d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n} c_0}{2 \Delta f N_{\mathrm{Per}}} d^=2ΔfNPern^c0
其中:
- n ^ \hat{n} n^ 是从周期图中检测到的频率索引。
- c 0 c_0 c0 是信号传播速度。
- Δ f \Delta f Δf 是频率分辨率。
- N P e r N_{\mathrm{Per}} NPer 是周期图的样本数量。
2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数
我们可以计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的偏导数,以便将其用于方差的转换:
∂ d ^ ∂ n ^ = c 0 2 Δ f N P e r \frac{\partial \hat{d}}{\partial \hat{n}} = \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} ∂n^∂d^=2ΔfNPerc0
3. 将频率的方差转化为距离的方差
根据 CRB 的转换关系:
var [ d ^ ] = ∣ ∂ d ^ ∂ n ^ ∣ 2 var [ n ^ ] \operatorname{var}[\hat{d}] = \left| \frac{\partial \hat{d}}{\partial \hat{n}} \right|^2 \operatorname{var}[\hat{n}] var[d^]= ∂n^∂d^ 2var[n^]
将上面计算的导数代入:
var [ d ^ ] = ( c 0 2 Δ f N P e r ) 2 var [ n ^ ] \operatorname{var}[\hat{d}] = \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \operatorname{var}[\hat{n}] var[d^]=(2ΔfNPerc0)2var[n^]
4. 从频率的 CRB 获得 var [ n ^ ] \operatorname{var}[\hat{n}] var[n^]
根据频率估计的 Cramér-Rao Bound,我们有:
var [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^]≥(N2−1)N6σN2
注意到频率 ω ^ \hat{\omega} ω^ 与索引 n ^ \hat{n} n^ 的关系为:
ω ^ = 2 π n ^ N P e r \hat{\omega} = \frac{2\pi \hat{n}}{N_{\mathrm{Per}}} ω^=NPer2πn^
因此:
n ^ = N P e r ω ^ 2 π \hat{n} = \frac{N_{\mathrm{Per}} \hat{\omega}}{2\pi} n^=2πNPerω^
推导方差的关系:
var [ n ^ ] = ( N P e r 2 π ) 2 var [ ω ^ ] \operatorname{var}[\hat{n}] = \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \operatorname{var}[\hat{\omega}] var[n^]=(2πNPer)2var[ω^]
5. 将 var [ n ^ ] \operatorname{var}[\hat{n}] var[n^] 代入距离方差公式
将 var [ ω ^ ] \operatorname{var}[\hat{\omega}] var[ω^] 的 CRB 代入:
var [ n ^ ] ≥ ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{n}] \geq \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[n^]≥(2πNPer)2(N2−1)N6σN2
将其代入到距离方差公式中:
var [ d ^ ] ≥ ( c 0 2 Δ f N P e r ) 2 ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{d}] \geq \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[d^]≥(2ΔfNPerc0)2(2πNPer)2(N2−1)N6σN2
6. 简化公式
最终的方差表达式变为:
var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
这就是你提到的结果:
var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
总结来说,主要步骤是通过计算导数关系,将频率的方差转化为距离的方差,并结合频率的 CRB 得到最终结果。
相关文章:
【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界
【1】OFDM Radar Algorithms in Mobile Communication Networks pp34 文章目录 1. 频率和距离之间的关系2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数3. 将频率的方差转化为距离的方差4. 从频率的 CRB 获得 var [ n ^ ] \operatorname{var}[\hat{n}] var[n^]5. 将 …...
Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容
介绍 在当今数据驱动的世界中,抓取动态网页内容变得越来越重要,尤其是像抖音这样的社交平台,动态加载的评论等内容需要通过特定的方式来获取。传统的静态爬虫方法难以处理这些由JavaScript生成的动态内容,Selenium爬虫技术则是一…...
Z-BlogPHP显示错误Undefined array key 0 (set_error_handler)的解决办法
今天打开博客的时候,意外发现页面,打开均显示错误:Undefined array key 0 (set_error_handler)。 博客程序采用的是Z-BlogPHP。百度了一圈没有找到解决办法,在官方论坛里也没找到解决办法。 于是开始自己排查原因。我服务器采用…...
java-实例化一个List,然后添加数据的方法详解
在Java中,实例化一个 List 并向其中添加数据非常简单。List 是一个接口,因此我们通常使用它的常见实现类 ArrayList 或 LinkedList。以下是一些常见的操作方法: ### 1. 使用 ArrayList 实例化并添加数据 java import java.util.ArrayList; …...
【Linux系统】Ubuntu的简单操作
什么是 Ubuntu? Ubuntu(乌帮图)是一个非洲词汇,它的意思是“人性对待他人”或“群在故我在”。Ubuntu发行版将Ubuntu精神带到软件世界之中。 目前已有大量各种各样基于GNU/Linux的操作系统,例如:Debian,SuSE,Gentoo,R…...
标准日志插件项目【C/C++】
博客主页:花果山~程序猿-CSDN博客 文章分栏:项目日记_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,项目介…...
SpingBoot原理
SpingBoot原理 在前面十多天的课程当中,我们学习的都是web开发的技术使用,都是面向应用层面的,我们学会了怎 么样去用。而我们今天所要学习的是web后端开发的最后一个篇章springboot原理篇,主要偏向于底 层原理。 我们今天的课程…...
Cout输出应用举例
Cout输出应用 在main.cpp里输入程序如下: #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <sstream> #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和res…...
java的无锁编程和锁机制
Java 的并发编程中,为了保证线程安全和高性能,采用了两种主要的同步手段:锁机制和无锁编程。以下是对锁机制、无锁编程、死锁及其避免的详细讲解。 一、无锁编程 无锁编程通过原子操作来避免传统锁,从而减少线程的上下文切换&am…...
vue实现富文本编辑器上传(粘贴)图片 + 文字
vue实现富文本编辑器上传(粘贴)图片 文字 1.安装插件 npm install vue-quill-editor -s2.在使用vue-quill-editor富文本的时候,对于图片的处理经常是将图片转换成base64,再上传数据库,但是base64不好存储。 原理&a…...
子集和全排列(深度优先遍历)问题
欢迎访问杀马特主页:小小杀马特主页呀! 目录 前言: 例题一全排列: 1.题目介绍: 2.思路汇总: 3.代码解答: 例题二子集: 题目叙述: 解法一: 1.思路汇总…...
判断检测框是否在感兴趣区域(ROI)内
判断检测框是否在感兴趣区域(ROI)内 在计算机视觉和图像处理中,我们经常需要确定一个矩形检测框是否位于一个特定的感兴趣区域(Region of Interest, ROI)内。这个ROI可以是一个多边形,而检测框则是一个矩形…...
正点原子阿尔法ARM开发板-IMX6ULL(九)——关于SecureCRT连接板子上的ubuntu
文章目录 一、拨码器二、SecureCRT 一、拨码器 emmm,也是好久没学IMX6ULL了,也是忘了拨码器决定了主板的启动方式 一种是直接从TF卡中读取文件(注意这里是通过imdownload软件编译好了之后,通过指令放入TF卡) 一种是现在这种用串口…...
微信支付Java+uniapp微信小程序
JS: request.post(/vip/pay, {//这是自己写的java支付接口id: this.vipInfo.id,payWay: wechat-mini}).then((res) > {let success (res2) > {//前端的支付成功回调函数this.$refs.popup.close();// 支付成功刷新当前页面setTimeout(() > {this.doGetVipI…...
【NOIP提高组】加分二叉树
【NOIP提高组】加分二叉树 💐The Begin💐点点关注,收藏不迷路💐 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整…...
HarmonyOS 相对布局(RelativeContainer)
1. HarmonyOS 相对布局(RelativeContainer) 文档中心:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/arkts-layout-development-relative-layout-V5 RelativeContainer为采用相对布局的容器,支持容器内部的子元素设…...
webpack5搭建react脚手架详细步骤
1. 初始化项目 首先,创建一个新目录并初始化项目: bash mkdir create-react cd create-react pnpm init --y git init 这里使用pnpm作为包管理工具,因为它在处理依赖和速度上表现更好。 2. 安装React和TypeScript 安装React和React-DOM…...
速盾:高防cdn怎么拦截恶意ip?
高防CDN(Content Delivery Network)是一种用于防御网络攻击和提供高可用性的服务。它通过分发网络流量,将用户的请求导向最近的服务器,从而提高网站的加载速度和稳定性。然而,不可避免地,有些恶意IP地址会试…...
太阳能面板分割系统:训练自动化
太阳能面板分割系统源码&数据集分享 [yolov8-seg-EfficientHead&yolov8-seg-vanillanet等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Globa…...
C++笔记---位图
1. 位图的概念 位图(Bitmap)是一种基于位操作的数据结构,用于表示一组元素的集合信息。它通常是一个仅包含0和1的数组,每个元素对应一个二进制位,若该元素存在,则对应的位为1;若不存在ÿ…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
