当前位置: 首页 > news >正文

【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界

【1】OFDM Radar Algorithms in Mobile Communication Networks pp34

如何根据 d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n}c_0}{2\Delta f N_{\mathrm{Per}}} d^=fNPern^c0 var ⁡ [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^](N21)N6σN2推出 var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

要从给定的距离估计公式和频率估计的方差下界推导出距离估计的方差下界,我们可以按照以下步骤进行:

1. 频率和距离之间的关系

已知距离估计的公式为:
d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n} c_0}{2 \Delta f N_{\mathrm{Per}}} d^=fNPern^c0
其中:

  • n ^ \hat{n} n^ 是从周期图中检测到的频率索引。
  • c 0 c_0 c0 是信号传播速度。
  • Δ f \Delta f Δf 是频率分辨率。
  • N P e r N_{\mathrm{Per}} NPer 是周期图的样本数量。

2. 计算 d ^ \hat{d} d^ n ^ \hat{n} n^ 的导数

我们可以计算 d ^ \hat{d} d^ n ^ \hat{n} n^ 的偏导数,以便将其用于方差的转换:
∂ d ^ ∂ n ^ = c 0 2 Δ f N P e r \frac{\partial \hat{d}}{\partial \hat{n}} = \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} n^d^=fNPerc0

3. 将频率的方差转化为距离的方差

根据 CRB 的转换关系:
var ⁡ [ d ^ ] = ∣ ∂ d ^ ∂ n ^ ∣ 2 var ⁡ [ n ^ ] \operatorname{var}[\hat{d}] = \left| \frac{\partial \hat{d}}{\partial \hat{n}} \right|^2 \operatorname{var}[\hat{n}] var[d^]= n^d^ 2var[n^]

将上面计算的导数代入:
var ⁡ [ d ^ ] = ( c 0 2 Δ f N P e r ) 2 var ⁡ [ n ^ ] \operatorname{var}[\hat{d}] = \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \operatorname{var}[\hat{n}] var[d^]=(fNPerc0)2var[n^]

4. 从频率的 CRB 获得 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^]

根据频率估计的 Cramér-Rao Bound,我们有:
var ⁡ [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^](N21)N6σN2

注意到频率 ω ^ \hat{\omega} ω^ 与索引 n ^ \hat{n} n^ 的关系为:
ω ^ = 2 π n ^ N P e r \hat{\omega} = \frac{2\pi \hat{n}}{N_{\mathrm{Per}}} ω^=NPer2πn^

因此:
n ^ = N P e r ω ^ 2 π \hat{n} = \frac{N_{\mathrm{Per}} \hat{\omega}}{2\pi} n^=2πNPerω^

推导方差的关系:
var ⁡ [ n ^ ] = ( N P e r 2 π ) 2 var ⁡ [ ω ^ ] \operatorname{var}[\hat{n}] = \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \operatorname{var}[\hat{\omega}] var[n^]=(2πNPer)2var[ω^]

5. 将 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^] 代入距离方差公式

var ⁡ [ ω ^ ] \operatorname{var}[\hat{\omega}] var[ω^] 的 CRB 代入:
var ⁡ [ n ^ ] ≥ ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{n}] \geq \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[n^](2πNPer)2(N21)N6σN2

将其代入到距离方差公式中:
var ⁡ [ d ^ ] ≥ ( c 0 2 Δ f N P e r ) 2 ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{d}] \geq \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[d^](fNPerc0)2(2πNPer)2(N21)N6σN2

6. 简化公式

最终的方差表达式变为:
var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

这就是你提到的结果:
var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

总结来说,主要步骤是通过计算导数关系,将频率的方差转化为距离的方差,并结合频率的 CRB 得到最终结果。

相关文章:

【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界

【1】OFDM Radar Algorithms in Mobile Communication Networks pp34 文章目录 1. 频率和距离之间的关系2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数3. 将频率的方差转化为距离的方差4. 从频率的 CRB 获得 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^]5. 将 …...

Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容

介绍 在当今数据驱动的世界中,抓取动态网页内容变得越来越重要,尤其是像抖音这样的社交平台,动态加载的评论等内容需要通过特定的方式来获取。传统的静态爬虫方法难以处理这些由JavaScript生成的动态内容,Selenium爬虫技术则是一…...

Z-BlogPHP显示错误Undefined array key 0 (set_error_handler)的解决办法

今天打开博客的时候,意外发现页面,打开均显示错误:Undefined array key 0 (set_error_handler)。 博客程序采用的是Z-BlogPHP。百度了一圈没有找到解决办法,在官方论坛里也没找到解决办法。 于是开始自己排查原因。我服务器采用…...

java-实例化一个List,然后添加数据的方法详解

在Java中,实例化一个 List 并向其中添加数据非常简单。List 是一个接口,因此我们通常使用它的常见实现类 ArrayList 或 LinkedList。以下是一些常见的操作方法: ### 1. 使用 ArrayList 实例化并添加数据 java import java.util.ArrayList; …...

【Linux系统】Ubuntu的简单操作

什么是 Ubuntu? Ubuntu(乌帮图)是一个非洲词汇,它的意思是“人性对待他人”或“群在故我在”。Ubuntu发行版将Ubuntu精神带到软件世界之中。 目前已有大量各种各样基于GNU/Linux的操作系统,例如:Debian,SuSE,Gentoo,R…...

标准日志插件项目【C/C++】

博客主页:花果山~程序猿-CSDN博客 文章分栏:项目日记_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,项目介…...

SpingBoot原理

SpingBoot原理 在前面十多天的课程当中,我们学习的都是web开发的技术使用,都是面向应用层面的,我们学会了怎 么样去用。而我们今天所要学习的是web后端开发的最后一个篇章springboot原理篇,主要偏向于底 层原理。 我们今天的课程…...

Cout输出应用举例

Cout输出应用 在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <sstream> #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和res…...

java的无锁编程和锁机制

Java 的并发编程中&#xff0c;为了保证线程安全和高性能&#xff0c;采用了两种主要的同步手段&#xff1a;锁机制和无锁编程。以下是对锁机制、无锁编程、死锁及其避免的详细讲解。 一、无锁编程 无锁编程通过原子操作来避免传统锁&#xff0c;从而减少线程的上下文切换&am…...

vue实现富文本编辑器上传(粘贴)图片 + 文字

vue实现富文本编辑器上传&#xff08;粘贴&#xff09;图片 文字 1.安装插件 npm install vue-quill-editor -s2.在使用vue-quill-editor富文本的时候&#xff0c;对于图片的处理经常是将图片转换成base64&#xff0c;再上传数据库&#xff0c;但是base64不好存储。 原理&a…...

子集和全排列(深度优先遍历)问题

欢迎访问杀马特主页&#xff1a;小小杀马特主页呀&#xff01; 目录 前言&#xff1a; 例题一全排列&#xff1a; 1.题目介绍&#xff1a; 2.思路汇总&#xff1a; 3.代码解答&#xff1a; 例题二子集&#xff1a; 题目叙述&#xff1a; 解法一&#xff1a; 1.思路汇总…...

判断检测框是否在感兴趣区域(ROI)内

判断检测框是否在感兴趣区域&#xff08;ROI&#xff09;内 在计算机视觉和图像处理中&#xff0c;我们经常需要确定一个矩形检测框是否位于一个特定的感兴趣区域&#xff08;Region of Interest, ROI&#xff09;内。这个ROI可以是一个多边形&#xff0c;而检测框则是一个矩形…...

正点原子阿尔法ARM开发板-IMX6ULL(九)——关于SecureCRT连接板子上的ubuntu

文章目录 一、拨码器二、SecureCRT 一、拨码器 emmm,也是好久没学IMX6ULL了&#xff0c;也是忘了拨码器决定了主板的启动方式 一种是直接从TF卡中读取文件&#xff08;注意这里是通过imdownload软件编译好了之后&#xff0c;通过指令放入TF卡&#xff09; 一种是现在这种用串口…...

微信支付Java+uniapp微信小程序

JS&#xff1a; request.post(/vip/pay, {//这是自己写的java支付接口id: this.vipInfo.id,payWay: wechat-mini}).then((res) > {let success (res2) > {//前端的支付成功回调函数this.$refs.popup.close();// 支付成功刷新当前页面setTimeout(() > {this.doGetVipI…...

【NOIP提高组】加分二叉树

【NOIP提高组】加分二叉树 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 设一个n个节点的二叉树tree的中序遍历为&#xff08;l,2,3,…,n&#xff09;&#xff0c;其中数字1,2,3,…,n为节点编号。每个节点都有一个分数&#xff08;均为正整…...

HarmonyOS 相对布局(RelativeContainer)

1. HarmonyOS 相对布局&#xff08;RelativeContainer&#xff09; 文档中心:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/arkts-layout-development-relative-layout-V5   RelativeContainer为采用相对布局的容器&#xff0c;支持容器内部的子元素设…...

webpack5搭建react脚手架详细步骤

1. 初始化项目 首先&#xff0c;创建一个新目录并初始化项目&#xff1a; bash mkdir create-react cd create-react pnpm init --y git init 这里使用pnpm作为包管理工具&#xff0c;因为它在处理依赖和速度上表现更好。 2. 安装React和TypeScript 安装React和React-DOM…...

速盾:高防cdn怎么拦截恶意ip?

高防CDN&#xff08;Content Delivery Network&#xff09;是一种用于防御网络攻击和提供高可用性的服务。它通过分发网络流量&#xff0c;将用户的请求导向最近的服务器&#xff0c;从而提高网站的加载速度和稳定性。然而&#xff0c;不可避免地&#xff0c;有些恶意IP地址会试…...

太阳能面板分割系统:训练自动化

太阳能面板分割系统源码&#xff06;数据集分享 [yolov8-seg-EfficientHead&#xff06;yolov8-seg-vanillanet等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Globa…...

C++笔记---位图

1. 位图的概念 位图&#xff08;Bitmap&#xff09;是一种基于位操作的数据结构&#xff0c;用于表示一组元素的集合信息。它通常是一个仅包含0和1的数组&#xff0c;每个元素对应一个二进制位&#xff0c;若该元素存在&#xff0c;则对应的位为1&#xff1b;若不存在&#xff…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...