当前位置: 首页 > news >正文

python 爬虫 入门 四、线程,进程,协程

目录

一、进程

 特征:

 使用:

初始代码

 进程改装代码

二、线程 

特征:

使用: 

三、协程 

后续:五、抓取图片、视频


        线程和进程大部分人估计都知道,但协程就不一定了。

一、进程

        进程是操作系统分配资源和调度的基本单位,一个程序开始运行时,操作系统会给他分配一块独立的内存空间并分配一个PCB作为唯一标识。初始化内存空间后进程进入就绪态,PCB插入就绪队列。轮到该进程时,操作系统会给进程分配CPU时间片,让进程进入运行态。时间片用完后,重新返回就绪队列,等待下一次分配。如果运行途中,进程遇到了阻塞事件,就会让出CPU给其他就绪进程,自己则进入阻塞队列,待阻塞结束后,重新返回就绪队列。

进程的状态(网图)

 特征:

  • 动态性:进程是程序的一次执行过程,有生命期。
  • 并发性:多个进程实体同存于内存中,能并发执行。
  • 独立性:进程是资源分配的基本单位,拥有独立的内存空间和系统资源。
  • 异步性:进程以各自独立、不可预知的速度向前推进。
  • 结构特性:每个进程由程序段、数据段和一个进程控制块(PCB)三部分组成。

 使用:

        进程用的比较少,线程协程用的多,因为进程之间的切换需要的资源太多了,比较慢,而且因为内存独立而不好通信。

        今天试试这个网站泰坦陨落2steam版新手常见问题解决方法汇总 新手入门指南_逗游网一个游戏攻略,我们要尝试获取每一页红框中的内容,总共9页。

        先来看看数据在不在页面源代码中,使用 Ctrl+U进入页面源代码,再Ctrl+F查找文字内容。发现页面源代码里有,这表明内容非脚本生成的,少了一大截麻烦。

        老样子,通过抓包找到请求,就知道了url和请求方法,根据p不同的取值(1~9)即可切换不同的页面。现在我们可以开始写代码了。

初始代码

         先来个无并行的,只记录请求部分时间。最后结果存在word文档里面。之后只展示控制台输出,word输出没什么差别。

import time
from io import BytesIOimport requests
from bs4 import BeautifulSoup
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.shared import Inches, RGBColordef out_word(bs_datas, out_path):  # 将bs_datas内容保存,out_path为保存文件名# 创建Word文档doc = Document()# 遍历HTML内容for bs_data in bs_datas:if bs_data is None:continuefor section in bs_data.find_all('p'):section_all = section.find_all()  # 获取部分中所有元素section_all.insert(0, section)  # 列表第一个插入section_text = section_all[-1].string  # 最后一个应该是无嵌套的纯文本if section_text is None or section_text.strip() == "":  # 空的看看是不是图片if section_all[-1].name == "img":paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run()# 下载图片img_url = section_all[-1]['src']img_response = requests.get(img_url)  # 下载图片img_stream = BytesIO(img_response.content)# 将图片添加到Word文档中run.add_picture(img_stream, Inches(5))  # 调整图片宽度else:continueelse:  # 有文本,写下来paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run('\t' + section_text.strip())  # 获取标签文本,前面空格for part in section_all:  # 遍历每个部分,给段落添加属性if part.name == 'strong':  # 粗体run.bold = True  # 设置为粗体elif 'align' in part.attrs:  # 有对齐方式,这估计只有图片有个居中对齐,不过都写上吧align = part['align'].upper()if align == 'LEFT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif align == 'RIGHT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHTelif align == 'CENTER':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTERelif align == 'JUSTIFY':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.JUSTIFYelse:paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif part.name == 'span' and 'style' in part.attrs:  # 有颜色style = part['style']if style.startswith('color:'):color_str = style.split(':')[1]# 将颜色字符串转换为 RGB 分量r, g, b = int(color_str[1:3], 16), int(color_str[3:5], 16), int(color_str[5:7], 16)# 创建一个 RGBColor 对象color = RGBColor(r, g, b)run.font.color.rgb = color  # 上色# 保存Word文档doc.save(out_path + '.docx')def get_text(bs_datas, url, i):  # 获取p=i页内容(bs4)存在bs_datas[i-1]params = {"p": str(i)}with requests.get(url=url, headers=headers, params=params) as resp:resp.encoding = "utf-8"  # 当页面乱码改这里bs = BeautifulSoup(resp.text, "html.parser")data = bs.find("div", class_="CH396071PsfiiY01QjM3f")bs_datas[i - 1] = dataprint(f"页面{i}结束")url = "https://www.doyo.cn/article/396071"
headers = {# 用户代理,某些网站验证用户代理,微微改一下,如果提示要验证码之类的,使用它"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 ""Safari/537.36 Edg/126.0.0.0",
}
bs_datas = [None] * 9
now_time = time.time()  # 记录访问时间
for i in range(1, 10):get_text(bs_datas, url, i)
# get_text(bs_datas, url, 1)
print("用时:", time.time() - now_time)
print(bs_datas)
out_word(bs_datas, 'output')

控制台部分输出

word文档部分结果

 进程改装代码

平常使用时,我们可以通过multiprocessing.Pool创建进程池或者multiprocessing.Process创建进程。先来两段代码展示一下进程池和进程的使用

进程池,进程池像是工具箱,会自动分配和回收进程。

import time
from multiprocessing import Pool
import osdef task(m,n):for i in range(m,n):print(f"进程: {os.getpid()} 输出:{i}")# time.sleep(0)   # 睡一下,让出cpu(为了更好展示并发性)if __name__ == "__main__":ranges = [(10,100)]*10with Pool(processes=3) as pool:  # 使用3个进程pool.starmap(task, ranges)   # 有10个任务
进程完成任务后被分配到新任务
三个进程一起完成任务

进程,注意你启动进程后,只是把它放到了就绪队列,具体什么时候运行要看什么时候轮到它。

import time
from multiprocessing import Process
import osdef task(m,n):for i in range(m,n):print(f"进程: {os.getpid()} 输出:{i}")# time.sleep(0)   # 睡一下,让出cpu(为了更好展示并发性)if __name__ == "__main__":processes = []for i in range(3):p = Process(target=task, args=(100,1000))processes.append(p)for p in processes: # 启动所有进程p.start()for p in processes: # join等待进程结束后才会继续运行。p.join()print("全部进程结束")

两种方式都会出现下面这种现象,进程a和进程有几率交叉输出,这就是并发的表现 

         下面是用进程改装的代码,(图片请求591了,可能是刷太多次不让看了?所以加了个200判断,不影响。)切实能快一点。

import time
from io import BytesIO
from multiprocessing import Poolimport requests
from bs4 import BeautifulSoup
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.shared import Inches, RGBColordef out_word(bs_datas, out_path):  # 将bs_datas内容保存,out_path为保存文件名# 创建Word文档doc = Document()# 遍历HTML内容for bs_data in bs_datas:if bs_data is None:continuefor section in bs_data.find_all('p'):section_all = section.find_all()  # 获取部分中所有元素section_all.insert(0, section)  # 列表第一个插入section_text = section_all[-1].string  # 最后一个应该是无嵌套的纯文本if section_text is None or section_text.strip() == "":  # 空的看看是不是图片if section_all[-1].name == "img":paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run()# 下载图片img_url = section_all[-1]['src']img_response = requests.get(img_url)if not img_response ==200:continue# 下载图片img_stream = BytesIO(img_response.content)# 将图片添加到Word文档中run.add_picture(img_stream, Inches(5))  # 调整图片宽度else:continueelse:  # 有文本,写下来paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run('\t' + section_text.strip())  # 获取标签文本,前面空格for part in section_all:  # 遍历每个部分,给段落添加属性if part.name == 'strong':  # 粗体run.bold = True  # 设置为粗体elif 'align' in part.attrs:  # 有对齐方式,这估计只有图片有个居中对齐,不过都写上吧align = part['align'].upper()if align == 'LEFT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif align == 'RIGHT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHTelif align == 'CENTER':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTERelif align == 'JUSTIFY':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.JUSTIFYelse:paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif part.name == 'span' and 'style' in part.attrs:  # 有颜色style = part['style']if style.startswith('color:'):color_str = style.split(':')[1]# 将颜色字符串转换为 RGB 分量r, g, b = int(color_str[1:3], 16), int(color_str[3:5], 16), int(color_str[5:7], 16)# 创建一个 RGBColor 对象color = RGBColor(r, g, b)run.font.color.rgb = color  # 上色# 保存Word文档doc.save(out_path + '.docx')def get_text(bs_datas, headers, url, i):  # 获取p=i页内容(bs4)存在bs_datas[i-1]params = {"p": str(i)}with requests.get(url=url, headers=headers, params=params) as resp:resp.encoding = "utf-8"  # 当页面乱码改这里bs = BeautifulSoup(resp.text, "html.parser")data = bs.find("div", class_="CH396071PsfiiY01QjM3f")print(f"页面{i}结束")return str(data),iif __name__ == "__main__":url = "https://www.doyo.cn/article/396071"headers = {# 用户代理,某些网站验证用户代理,微微改一下,如果提示要验证码之类的,使用它"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 ""Safari/537.36 Edg/126.0.0.0",}bs_datas = [None] * 9data_chunks = [(bs_datas,headers, url, i) for i in range(1,10)]now_time = time.time()  # 记录访问时间with Pool(processes=4) as pool:  # 使用4个进程datas = pool.starmap(get_text, data_chunks)print("用时:", time.time() - now_time)for data in datas:bs_datas[data[1]-1]=BeautifulSoup(data[0], "html.parser")print(bs_datas)out_word(bs_datas, 'output')

二、线程 

        线程是cpu调度的基本单位,一个进程能有很多个线程(至少一个),进程是线程的容器。他的状态、特性、使用都和进程相似,有时候也成为轻量级进程。

        与进程相比,线程的资源分配、调度、切换的花销都更少。而线程因为没有自己独立的内存空间,在通信上更灵活。

特征:

  • 轻量级:相对于进程而言,线程是轻量级的执行单元,它只拥有一点必不可少的资源,如程序计数器、一组寄存器和栈。
  • 共享资源:线程属于同一进程,它们共享进程的内存空间和资源,这使得线程之间的通信更加方便。
  • 独立执行流:每个线程都有自己的执行路径,线程在执行过程中独立运行,互不干扰。
  • 上下文切换快:线程间的上下文切换相对较快,因为线程共享了大部分上下文信息。

使用: 

在python中,进程和线程的创建、使用的代码十分相似,这里只展示concurrent库线程池的使用:

import threading
from concurrent.futures import ThreadPoolExecutor
import timedef task(m, n):for i in range(m, n):print(f"线程: {threading.get_ident()} 输出:{i}")# time.sleep(0)   # 睡一下,让出cpu(为了更好展示并发性)if __name__ == "__main__":with ThreadPoolExecutor(3) as t:  # 使用3个线程for i in range(10):t.submit(task,m=10,n=100)print("end")

使用线程修改代码: 线程因为切换消耗少,自然速度能更快一些。

import time
from io import BytesIO
from concurrent.futures import ThreadPoolExecutor
import requests
from bs4 import BeautifulSoup
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.shared import Inches, RGBColordef out_word(bs_datas, out_path):  # 将bs_datas内容保存,out_path为保存文件名# 创建Word文档doc = Document()# 遍历HTML内容for bs_data in bs_datas:if bs_data is None:continuefor section in bs_data.find_all('p'):section_all = section.find_all()  # 获取部分中所有元素section_all.insert(0, section)  # 列表第一个插入section_text = section_all[-1].string  # 最后一个应该是无嵌套的纯文本if section_text is None or section_text.strip() == "":  # 空的看看是不是图片if section_all[-1].name == "img":paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run()# 下载图片img_url = section_all[-1]['src']img_response = requests.get(img_url)if not img_response ==200:continue# 下载图片img_stream = BytesIO(img_response.content)# 将图片添加到Word文档中run.add_picture(img_stream, Inches(5))  # 调整图片宽度else:continueelse:  # 有文本,写下来paragraph = doc.add_paragraph()  # 添加一个新的段落run = paragraph.add_run('\t' + section_text.strip())  # 获取标签文本,前面空格for part in section_all:  # 遍历每个部分,给段落添加属性if part.name == 'strong':  # 粗体run.bold = True  # 设置为粗体elif 'align' in part.attrs:  # 有对齐方式,这估计只有图片有个居中对齐,不过都写上吧align = part['align'].upper()if align == 'LEFT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif align == 'RIGHT':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHTelif align == 'CENTER':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTERelif align == 'JUSTIFY':paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.JUSTIFYelse:paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.LEFTelif part.name == 'span' and 'style' in part.attrs:  # 有颜色style = part['style']if style.startswith('color:'):color_str = style.split(':')[1]# 将颜色字符串转换为 RGB 分量r, g, b = int(color_str[1:3], 16), int(color_str[3:5], 16), int(color_str[5:7], 16)# 创建一个 RGBColor 对象color = RGBColor(r, g, b)run.font.color.rgb = color  # 上色# 保存Word文档doc.save(out_path + '.docx')def get_text(bs_datas, headers, url, i):  # 获取p=i页内容(bs4)存在bs_datas[i-1]params = {"p": str(i)}with requests.get(url=url, headers=headers, params=params) as resp:resp.encoding = "utf-8"  # 当页面乱码改这里bs = BeautifulSoup(resp.text, "html.parser")data = bs.find("div", class_="CH396071PsfiiY01QjM3f")bs_datas[i - 1] = dataprint(f"页面{i}结束")if __name__ == "__main__":url = "https://www.doyo.cn/article/396071"headers = {# 用户代理,某些网站验证用户代理,微微改一下,如果提示要验证码之类的,使用它"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 ""Safari/537.36 Edg/126.0.0.0",}bs_datas = [None] * 9data_chunks = [(bs_datas,headers, url, i) for i in range(1,10)]now_time = time.time()  # 记录访问时间with ThreadPoolExecutor(4) as t:  # 使用4个线程for i in range(1,10):t.submit(get_text,bs_datas=bs_datas,headers=headers,url=url,i=i)print("用时:", time.time() - now_time)print(bs_datas)out_word(bs_datas, 'output')

 

三、协程 

        协程比线程更小,它完全是在程序中切换代码的执行,而不需要操作系统的参与,具体来说,它可以在程序阻塞时去执行其他的代码段,而不需要白白让出cpu,不必切换线程也意味着没有切换消耗。下面来一段程序来表现协程:

import asyncio
import timedef f1s():print("f1s-in")time.sleep(1)print("f1s-out")def f3s():print("f3s-in")time.sleep(3)print("f3s-out")def f5s():print("f5s-in")time.sleep(5)print("f5s-out")async def af1s():print("f1s-in")# time.sleep(1) # time.sleep是同步操作,会终止异步await asyncio.sleep(1)  # 挂起代码,异步操作print("f1s-out")async def af3s():print("f3s-in")# time.sleep(3)await asyncio.sleep(3)print("f3s-out")async def af5s():print("f5s-in")# time.sleep(5)await asyncio.sleep(5)print("f5s-out")async def main():now_time = time.time()tasks = [asyncio.create_task(af1s()),asyncio.create_task(af3s()),asyncio.create_task(af5s())]await asyncio.wait(tasks)  # 一次启动多个任务print("启动协程:", time.time() - now_time)if __name__ == '__main__':now_time = time.time()f1s()f3s()f5s()print("正常:", time.time() - now_time)asyncio.run(main())

        可以看出协程能够在阻塞时执行其他函数,节约寿命。在爬虫中,请求服务器的过程中有大量等待操作,协程能尽可能利用这段等待时间。

        如果要在爬虫中使用协程,我们需要将会产生阻塞的函数换成协程异步函数,比如文件读写用aiofiles库,网络请求用aiohttp库。

        下面是用协程的代码,只需0.25s更快了。(没加后面保存部分,之前也一直没计算保存部分时间。)

import asyncio
import timeimport aiohttp
from bs4 import BeautifulSoupasync def get_text(bs_datas, headers, url, i):  # 获取p=i页内容(bs4)存在bs_datas[i-1]params = {"p": str(i)}async with aiohttp.ClientSession() as session:  # aiohttp.ClientSession()相当于requestsasync with session.get(url=url, headers=headers, params=params)as resp:bs = BeautifulSoup(await resp.text(), "html.parser")  # 图片换.content.red()data = bs.find("div", class_="CH396071PsfiiY01QjM3f")bs_datas[i - 1] = dataprint(f"页面{i}结束")async def main(bs_datas, headers, url):now_time = time.time()  # 记录访问时间tasks = []for i in range(1, 10):tasks.append(asyncio.create_task(get_text(bs_datas=bs_datas, headers=headers, url=url, i=i)))await asyncio.wait(tasks)  # 一次启动多个任务print("启动协程:", time.time() - now_time)if __name__ == "__main__":url = "https://www.doyo.cn/article/396071"headers = {# 用户代理,某些网站验证用户代理,微微改一下,如果提示要验证码之类的,使用它"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 ""Safari/537.36 Edg/126.0.0.0",}bs_datas = [None] * 9# asyncio.run(main(bs_datas, headers, url))loop = asyncio.get_event_loop()loop.run_until_complete(main(bs_datas, headers, url))print(bs_datas)

 在大量请求下,协程能够节省大量时间,请求数目越多越明显

后续:五、抓取图片、视频

        会有大量请求,正是协程展示的好时机

相关文章:

python 爬虫 入门 四、线程,进程,协程

目录 一、进程 特征: 使用: 初始代码 进程改装代码 二、线程 特征: 使用: 三、协程 后续:五、抓取图片、视频 线程和进程大部分人估计都知道,但协程就不一定了。 一、进程 进程是操作系统分配资…...

cloak斗篷伪装下的独立站

随着互联网的不断进步,越来越多的跨境电商卖家开始认识到独立站的重要性,并纷纷建立自己的独立站点。对于那些有志于进入这一领域的卖家来说,独立站是什么呢?独立站是指个人或小型团队自行搭建和运营的网站。 独立站能够帮助跨境…...

【Nas】X-DOC:在Mac OS X 中使用 WOL 命令唤醒局域网内 PVE 主机

【Nas】X-DOC:在Mac OS X 中使用 WOL 命令唤醒局域网内 PVE 主机 1、Mac OS X 端2、PVE 端(Debian Linux) 1、Mac OS X 端 (1)安装 wakeonlan 工具 brew install wakeonlan(2)唤醒 PVE 命令 …...

u盘装win10系统提示“windows无法安装到这个磁盘,选中的磁盘采用GPT分区形式”解决方法

我们在u盘安装原版win10 iso镜像时,发现在选择硬盘时提示了“windows无法安装到这个磁盘,选中的磁盘采用GPT分区形式”,直接导致了无法继续安装下去。出现这种情况要怎么解决呢?下面小编分享u盘安装win10系统提示“windows无法安装到这个磁盘…...

Linux系统之dc计算器工具的基本使用

Linux系统之dc计算器工具的基本使用 一、DC工具介绍二、dc命令的基本用法2.1 dc命令的help帮助信息2.2 dc命令基本用法2.3 dc命令常用操作符 三、dc命令的基本使用3.1dc命令的用法步骤3.2 简单数学计算3.3 通过文件来计算3.4 使用--expression计算3.5 使用dc命令进行高精度计算…...

使用Python计算相对强弱指数(RSI)进阶

使用Python计算相对强弱指数(RSI)进阶 废话不多说,直接上主题:> 代码实现 以下是实现RSI计算的完整代码: # 创建一个DataFramedata {DATE: date_list, # 日期CLOSE: close_px_list, # 收盘价格 }df pd.DataF…...

vue 解决:npm ERR! code ERESOLVE 及 npm ERR! ERESOLVE could not resolve 的方案

1、问题描述: 其一、需求为: 想要安装项目所需依赖,成功运行 vue 项目,想要在浏览器中能成功访问项目地址 其二、问题描述为: 在 package.json 文件打开终端平台,通过执行 npm install 命令&#xff0c…...

Android 原生开发与Harmony原生开发浅析

Android系统 基于Linux ,架构如下 底层 (Linux )> Native ( C层) > FrameWork层 (SystemService) > 系统应用 (闹钟/日历等) 从Android发版1.0开始到现在15,经历了大大小小的变革 从Android6.0以下是个分水岭,6.0之前权限都是直接卸载Manifest中配置 6.0开始 则分普…...

VIVO售后真好:屏幕绿线,4年免费换屏

只要亮屏就有。这也太影响使用了。 本来想换趁机换手机,看了VIVO发布的X200,决定等明年的X200 ULTRA。手头这个就准备修。 查了一下价格,换屏1600,优惠1100。咸鱼上X70 PRO也就800。能不能简单维修就解决呢?于是联系…...

数据类型【MySQL】

文章目录 建立表查看表删除表数据类型floatcharvarcharchar&&varchar 时间日期类型enum和setenum和set查找 建立表 mysql> create table if not exists user1(-> id int ,-> name varchar (20) comment 用户名 ,-> password char (32) comment 用户名的…...

流媒体协议.之(RTP,RTCP,RTSP,RTMP,HTTP)(二)

继续上篇介绍,本篇介绍一下封装RTP的数据格式,如何将摄像头采集的码流,音频的码流,封装到rtp里,传输。 有自己私有协议例子,有rtp协议,参考代码。注意不是rtsp协议。 一、私有协议 玩过tcp协议…...

在 Kakarot ZkEVM 上使用 Starknet Scaffold 构建应用

Starknet 和 EVM 我们所知的智能合约世界一直围绕着以太坊虚拟机(EVM),其主要语言是 Solidity。 尽管 Starknet 通过 STARKs 为以太坊开辟了新的可能性,但其缺点是它有一个不同的虚拟机 (CairoVM),这要求开发者学习 …...

DBeave如何连接达梦数据库,设置达梦驱动,真酷

前言 我们在使用DBeaver连接数据库时,默认可以连接常用的数据库,如mysql数据库,postgresql数据库,oracle数据库。但是,我们的国产数据库达梦数据库,默认在IDEA里面没有驱动,所以还得配置一下才…...

2024年全球 MoonBit 编程创新赛-零基础早鸟教程-使用wasm4八小时开发井子棋小游戏

前言 本篇文章主要分享 “2024年全球 MoonBit 编程创新赛 游戏赛道”参赛过程中九宫棋游戏的开发技巧和心得。以此抛砖引玉。首先介绍下 MoonBit。 月兔语言 MoonBit 是一个用于云计算和边缘计算的 WebAssembly 端到端的编程语言工具链。 您可以访问 https://try.moonbitlang.…...

机器学习4

第3章 线性模型 3.1 线性模型的基本形式 3.1.1 线性模型的核心公式 线性模型通过属性的线性组合进行预测,其核心公式为: [ f(x) \omega_1 X_1 \omega_2 X_2 … \omega_d X_d b ] 其中: ω 1 , ω 2 , . . . , ω d \omega_1, \omega_…...

Python数值计算(33)——simpson 3/8积分公式

1. 背景知识 既然前的Simpson可以通过使用三个点构造二次曲线近似积分,那么,如果点数增加到了4个,然后不就可以构造三次多项式的曲线,实现对目标值的积分吗? 如果采用和上一节介绍的同样的方法,我们可以推…...

<项目代码>YOLOv8路面垃圾识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…...

Java中的注解(白金版)

Spring中常用注解 Springboot中@Validated注解的使用 Swagger中常用注解 @Validate...

actor模型

Actor模型(Actor Model)是一种用于并发计算的数学模型和编程概念,它最早由计算机科学家 Carl Hewitt 等人提出,用于简化对多线程或并发系统的设计和实现。Actor模型在并发编程、分布式系统、消息传递系统等领域具有广泛应用。 核…...

合约门合同全生命周期管理系统:企业智能合同管理的新时代

合约门合同全生命周期管理系统:企业智能合同管理的新时代 1. 引言 随着现代企业的快速发展,合同管理的复杂性日益增加。无论是采购合同、销售合同还是合作协议,合同管理已成为企业运营中至关重要的一环。传统的手工合同管理方式往往效率低下…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

CSS | transition 和 transform的用处和区别

省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...