当前位置: 首页 > news >正文

深入浅出:ProcessPoolExecutor 处理异步生成器函数

深入浅出:ProcessPoolExecutor 处理异步生成器函数

    • 什么是 ProcessPoolExecutor?
    • 为什么要使用 ProcessPoolExecutor 处理异步生成器函数?
    • ProcessPoolExecutor 处理异步生成器函数的基本用法
      • 1. 导入模块
      • 2. 定义异步生成器函数
      • 3. 定义处理函数
      • 4. 使用 ProcessPoolExecutor 处理异步生成器
      • 代码解析
      • 运行结果
    • 注意事项
    • 总结

在现代编程中,异步编程和并发处理是提高程序性能的重要手段。Python 提供了 concurrent.futures 模块,其中的 ProcessPoolExecutor 是一个非常强大的工具,可以帮助我们轻松地实现多进程并发处理。本文将带你一步步了解如何使用 ProcessPoolExecutor 处理异步生成器函数,并通过简单的示例代码来帮助你快速上手。

什么是 ProcessPoolExecutor?

ProcessPoolExecutor 是 Python 标准库 concurrent.futures 中的一个类,用于创建和管理进程池。它允许你将任务分配给多个进程并行执行,从而提高程序的执行效率。与 ThreadPoolExecutor 不同,ProcessPoolExecutor 使用的是多进程,而不是多线程,因此它更适合处理 CPU 密集型任务。

为什么要使用 ProcessPoolExecutor 处理异步生成器函数?

在处理大量计算密集型任务时,单个进程可能会成为性能瓶颈。通过使用 ProcessPoolExecutor,我们可以将任务分配给多个进程并行执行,从而充分利用多核处理器的优势,显著提高程序的执行速度。异步生成器函数(async yield)可以让我们在处理大量数据时更加高效,结合 ProcessPoolExecutor 可以进一步提升性能。

ProcessPoolExecutor 处理异步生成器函数的基本用法

1. 导入模块

首先,我们需要导入 concurrent.futures 模块中的 ProcessPoolExecutor 类,以及 asyncio 模块用于异步编程。

from concurrent.futures import ProcessPoolExecutor
import asyncio

2. 定义异步生成器函数

定义一个异步生成器函数,用于生成一系列数据。

async def async_generator():for i in range(5):await asyncio.sleep(1)  # 模拟异步操作yield i

3. 定义处理函数

定义一个处理函数,用于处理异步生成器生成的数据。

def process_data(data):return data * data  # 计算平方

4. 使用 ProcessPoolExecutor 处理异步生成器

使用 ProcessPoolExecutor 创建一个进程池,并将异步生成器生成的数据提交到进程池中进行处理。

async def main():# 创建进程池with ProcessPoolExecutor(max_workers=4) as executor:# 获取异步生成器生成的数据async for data in async_generator():# 提交任务到进程池future = executor.submit(process_data, data)# 获取结果result = await asyncio.wrap_future(future)print(f"Processed data: {result}")if __name__ == "__main__":asyncio.run(main())

代码解析

  1. 定义异步生成器函数async_generator 函数用于生成一系列数据,并模拟了 1 秒的异步操作。
  2. 定义处理函数process_data 函数用于计算一个数的平方。
  3. 创建进程池:使用 ProcessPoolExecutor 创建一个最大进程数为 4 的进程池。
  4. 获取异步生成器生成的数据:使用 async for 循环获取异步生成器生成的数据。
  5. 提交任务到进程池:使用 executor.submit 方法将数据提交到进程池中进行处理。
  6. 获取结果:使用 asyncio.wrap_futureFuture 对象转换为异步任务,并通过 await 获取处理结果。
  7. 输出结果:最后,打印出每个处理结果。

运行结果

运行上述代码,你将看到类似以下的输出:

Processed data: 0
Processed data: 1
Processed data: 4
Processed data: 9
Processed data: 16

注意事项

  1. 进程间通信:由于进程之间是独立的,它们不能直接共享内存。因此,传递给进程的参数和返回值必须是可序列化的(例如,基本数据类型、列表、字典等)。
  2. GIL 问题:Python 的全局解释器锁(GIL)只影响线程,不影响进程。因此,ProcessPoolExecutor 可以充分利用多核 CPU 的优势。
  3. 任务数量:进程池的大小和任务数量需要根据实际情况进行调整,以避免资源浪费或性能瓶颈。

总结

ProcessPoolExecutor 是一个非常强大的工具,可以帮助我们轻松实现多进程并发处理。通过本文的介绍和示例代码,你应该已经掌握了如何使用 ProcessPoolExecutor 处理异步生成器函数。在实际项目中,合理使用 ProcessPoolExecutor 可以显著提高程序的性能,尤其是在处理 CPU 密集型任务时。

相关文章:

深入浅出:ProcessPoolExecutor 处理异步生成器函数

深入浅出:ProcessPoolExecutor 处理异步生成器函数 什么是 ProcessPoolExecutor?为什么要使用 ProcessPoolExecutor 处理异步生成器函数?ProcessPoolExecutor 处理异步生成器函数的基本用法1. 导入模块2. 定义异步生成器函数3. 定义处理函数4…...

elementUI表达自定义校验,校验在v-for中

注意&#xff1a;本帖为公开技术贴&#xff0c;不得用做任何商业用途 <el-form :inline"true" :rules"rules" :model"formData" ref"formRef" class"mt-[20px]"><el-form-item label"选择区域" prop&qu…...

Elasticsearch 在linux部署 及 Docker 集群部署详解案例示范

1. 在 CentOS 上安装和配置 Elasticsearch 在 CentOS 系统下&#xff0c;安装 Elasticsearch 主要分为以下步骤&#xff1a; 1.1 准备工作 在开始安装之前&#xff0c;确保你的系统满足以下基本条件&#xff1a; CentOS 版本要求&#xff1a;推荐使用 CentOS 7 及以上版本。…...

短信验证码发送实现(详细教程)

短信验证码 接口防刷强检验以及缓存验证码阿里云短信服务操作步骤验证码发送实现 好久没发文啦&#xff01;最近也是在工作中遇到我自认为需要记录笔记的需求&#xff0c;本人只求日后回顾有迹可寻&#xff0c;不喜勿喷&#xff01; 废话不多说&#xff0c;直接上代码&#xff…...

P450催化的联芳基偶联反应-文献精读72

Chemoenzymatic Synthesis of Fluorinated Mycocyclosin Enabled by the Engineered Cytochrome P450-Catalyzed Biaryl Coupling Reaction 经工程化的细胞色素P450催化的联芳基偶联反应实现氟代麦环素的化学酶促合成 摘要 将氟原子引入天然产物有望生成具有改良或新颖药理特…...

在不支持AVX的linux上使用PaddleOCR

背景 公司的虚拟机CPU居然不支持avx, 默认的paddlepaddle的cpu版本又需要有支持avx才行,还想用PaddleOCR有啥办法呢? 是否支持avx lscpu | grep avx 支持avx的话,会显示相关信息 如果不支持的话,python运行时导入paddle会报错 怎么办呢 方案一 找公司it,看看虚拟机为什么…...

Python数据分析——Numpy

纯个人python的一个小回忆笔记&#xff0c;当时假期花两天学的python&#xff0c;确实时隔几个月快忘光了&#xff0c;为了应付作业才回忆起来&#xff0c;不涉及太多基础&#xff0c;适用于有一定编程基础的参考回忆。 这一篇笔记来源于下面哔哩哔哩up主的视频&#xff1a; 一…...

JMeter快速入门示例

JMeter是一款开源的性能测试工具&#xff0c;常用于对Web服务和接口进行性能测试。 下载安装 官方下载网址&#xff1a; https://jmeter.apache.org/download_jmeter.cgi也可以到如下地址下载&#xff1a;https://download.csdn.net/download/oscar999/89910834 这里下载Wi…...

【333基于Java Web的考编论坛网站的设计与实现

毕 业 设 计&#xff08;论 文&#xff09; 考编论坛网站设计与实现 摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计…...

计算机网络关键名词中英对照

物理层 IMP - Interface Message Processor - 接口信息处理机 MODEM - Modulator-Demodulator - 调制解调器 LAN - Local Area Network - 局域网 FDM - Frequency Division Multiplexing - 频分复用 TDM - Time Division Multiplexing - 时分复用 STDM - Statistical Time…...

二叉树的学习

除了根节点外的其他节点只有一个直接前驱,有多个直接前驱的逻辑结构叫做图 任何一个树都可以看成是一个根节点和若干个不相交的子树构成的; 构建思维导图时使用树形结构 题目中给出AB是堂兄弟节点说明他们处在同一层 描述两节点之间的路径是从上到下的,同层没有路径,一条边记录…...

免费开源的医疗信息提取系统:提升超声波影像的诊断价值

一、系统概述 思通数科推出的医疗信息精准抽取系统&#xff0c;致力于解决当前医疗行业面临的信息碎片化和数据管理难题。传统医疗过程中&#xff0c;超声波影像数据与诊断报告之间的脱节&#xff0c;往往导致信息无法有效整合&#xff0c;影响医生的诊断效率与准确性。我们的…...

Bash 中的 ${} 和 $() 有什么区别 ?

Bash (Bourne-Again SHell) 是一种流行的 Unix SHell&#xff0c;用于编写脚本。如果您使用 Bash 脚本&#xff0c;那么了解不同的语法元素对于提高脚本的效率和避免错误是很重要的。 在本文中&#xff0c;我们将解释 Bash 中 ${} 和 $() 语法之间的区别&#xff0c;并向您展示…...

SPSS、R语言因子分析FA、主成分分析PCA对居民消费结构数据可视化分析

全文链接&#xff1a;https://tecdat.cn/?p37952 分析师&#xff1a;Ting Mei 在经济发展的大背景下&#xff0c;居民消费结构至关重要。本文围绕居民消费结构展开深入研究&#xff0c;运用 SPSS25.0 和 R 语言&#xff0c;以因子分析法和主成分分析法对东北三省居民消费价格指…...

高级SQL技巧掌握

高级SQL技巧掌握 在数据驱动的时代,掌握SQL不仅仅是为了解决具体问题,它更像是一把钥匙,帮助你打开数据分析的大门。你准备好提升你的SQL技能了吗?在这篇文章中,我们将一起探索十个必备的高级SQL查询技巧,这些技巧将帮助你更有效率地进行数据处理与分析。 1. 常见表表达…...

数组实例之三子棋的实现(C语言)

目录 前言 一、三子棋实现的逻辑 二、三子棋的实现 2.1文件的创建添加 2.2 test文件基本逻辑 2.2.1菜单的实现 2.2.2菜单的选择 2.2.3game函数棋盘的实现 2.3game.c文件的编写 2.3.1初始化函数的模块 2.3.2棋盘打印的模块 2.3.3实现棋盘界面的打印 2.3.4实现玩家下…...

【Linux驱动开发】设备树节点驱动开发入门

【Linux驱动开发】设备树节点驱动开发入门 文章目录 设备树文件设备树文件驱动开发附录&#xff1a;嵌入式Linux驱动开发基本步骤开发环境驱动文件编译驱动安装驱动自动创建设备节点文件 驱动开发驱动设备号地址映射&#xff0c;虚拟内存和硬件内存地址字符驱动旧字符驱动新字…...

C++——string的模拟实现(下)

目录 成员函数 3.4 修改操作 (3)insert()函数 (4)pop_back()函数 (5)erase()函数 (6)swap()函数 3.5 查找操作 (1)find()函数 (2)substr()函数 3.6 重载函数 (1)operator赋值函数 (2)其他比较函数 (3)流插入和流提取 完整代码 结束语 第一篇链接&#xff1a;C——…...

面试 Java 基础八股文十问十答第二十九期

面试 Java 基础八股文十问十答第二十九期 作者&#xff1a;程序员小白条&#xff0c;个人博客 相信看了本文后&#xff0c;对你的面试是有一定帮助的&#xff01;关注专栏后就能收到持续更新&#xff01; ⭐点赞⭐收藏⭐不迷路&#xff01;⭐ 1&#xff09;类加载过程 类加载…...

454.四数相加||

题目: 454. 四数相加 II - 力扣&#xff08;LeetCode&#xff09; 思路: 考虑到时间复杂度问题&#xff0c;本题最重要的是要将四个数组划分成两个部分&#xff0c;每个部分(n^2)的时间复杂度&#xff0c;选取数据结构时&#xff0c;考虑到既要存储元素(key),又要有元素次数…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...