当前位置: 首页 > news >正文

Git - 如何删除 push 过一次的文件链路追踪?

(以 target 文件夹为例)如果你已经在 .gitignore 中添加了 target/ 目录,但 target 文件夹仍然出现在 Git 的变更列表中,可能是因为它之前已经被添加到 Git 仓库中。即使你更新了 .gitignore,Git 仍然会跟踪这些文件。要彻底解决这个问题,你可以按照以下步骤操作。

1. 确认 .gitignore 文件中正确添加了 target/

确保你的 .gitignore 文件包含以下行:

/target/

这会忽略根目录下的 target 文件夹和所有子文件夹中的内容。

2. 从 Git 缓存中移除已经被跟踪的 target 文件

如果 target 文件夹已经被 Git 跟踪,需要先从 Git 的暂存区中移除这些文件,执行以下命令:

git rm -r --cached target/

这条命令不会删除本地的 target 文件夹或其内容,它只会从 Git 的跟踪列表中移除这些文件。

3. 提交更改

在移除 target 文件夹的跟踪之后,提交更改:

git add .gitignore
git commit -m "Remove target folder from tracking"

4. 推送到远程仓库

将更改推送到远程仓库:

git push

总结

这一步骤通过将 target/ 文件夹从 Git 缓存中移除,并确保 .gitignore 正确忽略它,从而彻底屏蔽该文件夹的提交。

相关文章:

Git - 如何删除 push 过一次的文件链路追踪?

(以 target 文件夹为例)如果你已经在 .gitignore 中添加了 target/ 目录,但 target 文件夹仍然出现在 Git 的变更列表中,可能是因为它之前已经被添加到 Git 仓库中。即使你更新了 .gitignore,Git 仍然会跟踪这些文件。…...

软件测试学习总结

一.软件测试概念和目的 软件测试的概念: 测试模型(V模型) 软件测试就是在软件投入运行前,对软件需求分析、设计规格说明和编码实现的最终审查,它是软件质量保证的关键步骤。 通常对软件测试的定义有两种描述: 定义1:软件测试是为了发现错误而执行程序的过程 定义2:…...

c语言错题——#define对应的查找替换

文章目录 一、题目 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目 分析 结构体向最长的char对齐,前两个位段元素一共42位,不足8位,合起来占1字节,最后一个单独1字节,一共3字节。另外…...

Visual Basic介绍及简单例子

Visual Basic(简称 VB)是一种由微软公司开发的包含协助开发环境的事件驱动编程语言。 一、主要特点 易于学习和使用: Visual Basic 具有直观的可视化开发环境,使用户可以通过拖放控件和设置属性的方式快速创建用户界面。对于初学者来说,这种方式非常容易上手,无需深入了…...

Matlab学习01-矩阵

目录 一,矩阵的创建 1,直接输入法创建矩阵 2,利用M文件创建矩阵 3,利用其它文本编辑器创建矩阵 二,矩阵的拼接 1,基本拼接 1) 水平方向的拼接 2)垂直方向的拼接 3&#xf…...

【复旦微FM33 MCU 外设开发指南】外设篇1——硬件除法器

前言 本系列基于复旦微FM33LC0系列单片机的DataSheet编写,旨在提供一些开发指南。 本文章及本系列其他文章将持续更新,本系列其它文章请跳转【复旦微FM33 MCU 外设开发指南】总集篇 本文章最后更新日期:2024/10/24 文章目录 前言用途工作流…...

在元神操作系统启动时自动执行任务脚本

1. 背景 本文主要介绍让元神操作系统启动时自动执行任务脚本的方法,适用于无人化任务执行目的。将任务脚本及相关的应用程序准备好之后,把装有元神操作系统的U盘插入目标电脑,然后打开电脑电源就会自动完成所设置的任务。 2. 方法 &#x…...

JAVA学习-练习试用Java实现“判断是否为等边三角形的方法”

问题: 定义一个三角形类(Triangle),包含三个边长(a, b, c)属性,并实现一个判断是否为等边三角形的方法。 解答思路: 下面是一个简单的 Triangle 类定义,其中包含了三个…...

Leetcode 140 Word Break II

题意&#xff1a;给定一个string以及一个wordDict,要求返回一个vector<string> &#xff0c;这个vector中的string都是word Dict中的组合 Input: s “catsanddog”, wordDict [“cat”,“cats”,“and”,“sand”,“dog”] Output: [“cats and dog”,“cat sand dog”…...

文理学院数据库应用技术实验报告0

文理学院数据库应用技术实验报告0 实验内容 打开cmd,利用MySQL命令连接MySQL服务器。 mysql -u root -p查看当前MySQL服务实例使用的字符集(character)。 SHOW VARIABLES LIKE character_set_server;查看当前MySQL服务实例支持的字符序(collation)。 SHOW VARIABLES LIKE c…...

Bootstrap 4 按钮

Bootstrap 4 按钮 Bootstrap 4 是一个流行的前端框架,它提供了大量的组件和样式,用于快速开发响应式和移动设备优先的网页。在本文中,我们将重点讨论 Bootstrap 4 中的按钮组件,包括它们的基本用法、样式选项和自定义方法。 基本按钮 在 Bootstrap 4 中,创建一个基本按…...

【笔记】LLM位置编码之标准位置编码

标准位置编码 起源原理证明&#xff1a;对于任何固定的偏移量 k k k&#xff0c; P E p o s k PE_{posk} PEposk​可以表示为 P E p o s PE_{pos} PEpos​的线性函数。计算 P E p o s k 与 P E p o s PE_{posk} 与PE_{pos} PEposk​与PEpos​的内积结论 通俗理解缺点 起源 由…...

环 境 配 置

01 Ubuntu18.04中QT环境 1. 下载安装包 官网 http://download.qt.io/archive/qt/5.9/5.9.1/qt-opensource-linux-x64-5.9.1.run 国内镜像服务器 ​https://mirrors.tuna.tsinghua.edu.cn/qt/archive/qt/5.9/5.9.1/qt-opensource-linux-x64-5.9.1.run QQ群 ...... 2. 安装 把下载…...

理解dbt artifacts及其实际应用

dbt是数据分析领域的一种变革性工具&#xff0c;它使数据专业人员能够对仓库中的数据进行转换和建模。它的强大功能之一是生成dbt artifacts&#xff1a;dbt运行的结构化输出&#xff0c;提供对dbt项目及其操作的深入了解。 dbt 构件介绍 dbt构件是每次dbt运行时生成的JSON文…...

100种算法【Python版】第15篇——KMP算法

本文目录 1 算法原理1.1 部分匹配表2 实现步骤3 示例说明4 python实例5 算法应用领域1 算法原理 KMP(Knuth-Morris-Pratt)算法是一种用于高效字符串匹配的算法。它通过预处理模式字符串,构建一个部分匹配表(前缀函数),以避免重复比较,从而提高匹配效率。KMP 算法通过利…...

【软件工程】软件项目管理/工程项目管理复习资料

第一章 软件项目管理概述习题 一. 填空题 实现项目目标的制约因素有&#xff08; 项目范围 &#xff09;、&#xff08; 成本 &#xff09;、&#xff08; 进度计划 &#xff09;、&#xff08; 客户满意度 &#xff09;等。 项目管理&#xff08; 启动过程组 &#xff09;、…...

C语言基础题(大合集2)

1. 时间转换 给定秒数 --> 输出秒数 转化成 时/分/秒 //时间转换 //给定秒数 --> 转换成 小时/分/秒 int main() {//输入int seconds 0;int h 0;//小时int m 0;//分钟int s 0;//秒scanf("%d", &seconds);//计算h seconds / 60 / 60;m seconds / 60…...

Stable Diffusion视频插件Ebsynth Utility使用方法

在Stable Diffusion中安装完Ebsynth Utility后&#xff0c;就可以开始试用了。 启动Stable Diffusion后&#xff0c;出面画面&#xff1a; 1、步骤1&#xff1a;视频分帧及生成蒙板帧 填入工程目录&#xff0c;选择上传所用的视频文件&#xff1a;注意对目录命名的要求-不能有…...

Ubuntu忘记密码

如果你忘记了WSL&#xff08;Windows Subsystem for Linux&#xff09;中Linux发行版的密码&#xff0c;可以按照以下步骤来重置密码&#xff1a; 一、对于Ubuntu或Debian等基于Debian的发行版&#xff08;以Ubuntu为例&#xff09; 关闭WSL实例&#xff08;如果正在运行&…...

使用Python实现深度学习模型:智能极端天气事件预测

极端天气事件,如暴雨、台风和热浪,往往会对人类社会和自然环境产生深远的影响。近年来,气象数据和深度学习技术的发展使得智能预测极端天气成为可能。通过训练深度学习模型,我们可以建立一个自动化的预测系统,从大量的历史气象数据中学习并预测未来的极端天气事件。这篇文…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...