贝叶斯中的充分统计量
内容来源
贝叶斯统计(第二版)中国统计出版社
前两篇笔记简述经典统计中的充分统计量和判断充分统计量的 N e y m a n Neyman Neyman 因子分解定理
而在贝叶斯统计中,充分统计量也有一个充要条件
定理兼定义
设
x = ( x 1 , x 2 , ⋯ , x n ) x=(x_1,x_2,\cdots,x_n) x=(x1,x2,⋯,xn) 是来自密度函数 p ( x ∣ θ ) p(x|\theta) p(x∣θ) 的一个样本
T = T ( x ) T=T(x) T=T(x) 是统计量,它的密度函数为 p ( t ∣ θ ) p(t|\theta) p(t∣θ)
H = π ( θ ) \mathscr{H}=\pi(\theta) H=π(θ) 是 θ \theta θ 的某个先验分布族
则 T ( x ) T(x) T(x) 为 θ \theta θ 的充分统计量的充要条件为
对任一先验分布 π ( θ ) ∈ H \pi(\theta)\in\mathscr{H} π(θ)∈H
π ( θ ∣ T ( x ) ) = π ( θ ∣ x ) \pi(\theta|T(x))=\pi(\theta|x) π(θ∣T(x))=π(θ∣x)
即用样本分布 p ( x ∣ θ ) p(x|\theta) p(x∣θ) 算得的后验分布与统计量 T ( x ) T(x) T(x) 算得的后验分布是相同的
例
设 x = ( x 1 , ⋯ , x n ) x=(x_1,\cdots,x_n) x=(x1,⋯,xn) 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的一个样本,则有
p ( x ∣ μ , σ 2 ) = ( 2 π σ ) − n exp [ − 1 2 σ 2 ∑ ( x i − μ ) 2 ] = ( 2 π σ ) − n exp [ − 1 2 σ 2 ∑ ( x i − x ‾ + x ‾ − μ ) 2 ] = ( 2 π σ ) − n exp { − 1 2 σ 2 [ ∑ ( x i − x ‾ ) 2 + 0 + n ( x ‾ − μ ) 2 ] } = ( 2 π σ ) − n exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } \begin{align*} p(x|\mu,\sigma^2)&=(\sqrt{2\pi}\sigma)^{-n}\exp\left[ -\frac{1}{2\sigma^2}\sum(x_i-\mu)^2\right]\\ &=(\sqrt{2\pi}\sigma)^{-n}\exp\left[ -\frac{1}{2\sigma^2}\sum(x_i-\overline{x}+\overline{x}-\mu)^2\right]\\ &=(\sqrt{2\pi}\sigma)^{-n}\exp\left\{ -\frac{1}{2\sigma^2}\left[\sum(x_i-\overline{x})^2+0+n(\overline{x}-\mu)^2 \right]\right\}\\ &=(\sqrt{2\pi}\sigma)^{-n}\exp\left\{ -\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\} \end{align*} p(x∣μ,σ2)=(2πσ)−nexp[−2σ21∑(xi−μ)2]=(2πσ)−nexp[−2σ21∑(xi−x+x−μ)2]=(2πσ)−nexp{−2σ21[∑(xi−x)2+0+n(x−μ)2]}=(2πσ)−nexp{−2σ21[Q+n(x−μ)2]}
其中
x ‾ = 1 n ∑ x i , Q = ∑ ( x i − x ‾ ) 2 \overline{x}=\frac{1}{n}\sum x_i,Q=\sum(x_i-\overline{x})^2 x=n1∑xi,Q=∑(xi−x)2
设 π ( μ , σ 2 ) \pi(\mu,\sigma^2) π(μ,σ2) 是任意一个先验分布,则 μ , σ 2 \mu,\sigma^2 μ,σ2 的后验密度为
π ( μ , σ 2 ∣ x ) = σ − n π ( μ , σ 2 ) exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } ∫ − ∞ ∞ ∫ 0 ∞ σ − n exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } d σ 2 d μ \pi(\mu,\sigma^2|x)=\frac {\sigma^{-n}\pi(\mu,\sigma^2) \exp\left\{-\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\}} { \int^{\infty}_{-\infty}\int^{\infty}_{0}\sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\}\mathrm{d}\sigma^2\mathrm{d}\mu } π(μ,σ2∣x)=∫−∞∞∫0∞σ−nexp{−2σ21[Q+n(x−μ)2]}dσ2dμσ−nπ(μ,σ2)exp{−2σ21[Q+n(x−μ)2]}
书上这里提了 ( x ‾ , Q ) (\overline{x},Q) (x,Q) 是 ( μ , σ 2 ) (\mu,\sigma^2) (μ,σ2) 的充分统计量,但接下来的过程并没有使用这个条件(?)
由*学生定理( t t t 分布的推论)*,得
x ‾ ∼ N ( μ , σ 2 / n ) , Q / σ 2 ∼ χ 2 ( n − 1 ) \overline{x}\sim N(\mu,\sigma^2/n),Q/\sigma^2\sim\chi^2(n-1) x∼N(μ,σ2/n),Q/σ2∼χ2(n−1)
由此可以写出 x ‾ \overline{x} x 与 Q Q Q 的分布
p ( x ‾ ∣ μ , σ 2 ) = n 2 π σ exp { − n 2 σ 2 ( x ‾ − μ ) 2 } p ( Q ∣ μ , σ 2 ) = 1 Γ ( n − 1 2 ) ( 2 σ 2 ) n − 1 2 Q n − 3 2 exp { − Q / 2 σ 2 } \begin{align*} &p(\overline{x}|\mu,\sigma^2)=\frac{\sqrt{n}}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{n}{2\sigma^2}(\overline{x}-\mu)^2\right\}\\ &p(Q|\mu,\sigma^2)=\frac{1}{\Gamma(\frac{n-1}{2})(2\sigma^2)^{\frac{n-1}{2}}} Q^{\frac{n-3}{2}}\exp\{-Q/2\sigma^2\} \end{align*} p(x∣μ,σ2)=2πσnexp{−2σ2n(x−μ)2}p(Q∣μ,σ2)=Γ(2n−1)(2σ2)2n−11Q2n−3exp{−Q/2σ2}
写 Q Q Q 的条件分布时,不要用卡方 p d f pdf pdf 再作变量变换。卡方分布是特殊的伽马分布,而且伽马分布有个特殊的性质——伸缩。所以有 Q ∼ Γ ( n − 1 2 , 2 σ 2 ) Q\sim \Gamma(\frac{n-1}{2},2\sigma^2) Q∼Γ(2n−1,2σ2)
然后由于 x ‾ \overline{x} x 与 Q Q Q 独立,所以 x ‾ \overline{x} x 与 Q Q Q 的联合密度函数为
这个独立也是学生定理的结论
π ( x ‾ , Q ∣ μ , σ 2 ) = n / 2 π σ Γ ( n − 1 2 ) ( 2 σ 2 ) n − 1 2 Q n − 3 2 exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } \pi(\overline{x},Q|\mu,\sigma^2)=\frac {\sqrt{n}/\sqrt{2\pi}\sigma} {\Gamma(\frac{n-1}{2})(2\sigma^2)^{\frac{n-1}{2}}} Q^{\frac{n-3}{2}} \exp\left\{-\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\} π(x,Q∣μ,σ2)=Γ(2n−1)(2σ2)2n−1n/2πσQ2n−3exp{−2σ21[Q+n(x−μ)2]}
由贝叶斯公式,得在给定 x ‾ \overline{x} x 和 Q Q Q 下的后验密度
π ( μ , σ 2 ∣ x ‾ , Q ) = π ( x ‾ , Q ∣ μ , σ 2 ) π ( μ , σ 2 ) ∫ − ∞ ∞ ∫ 0 ∞ π ( x ‾ , Q ∣ μ , σ 2 ) d σ 2 d μ = σ − n π ( μ , σ 2 ) exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } ∫ − ∞ ∞ ∫ 0 ∞ σ − n exp { − 1 2 σ 2 [ Q + n ( x ‾ − μ ) 2 ] } d σ 2 d μ \begin{align*} \pi(\mu,\sigma^2|\overline{x},Q)&= \frac{\pi(\overline{x},Q|\mu,\sigma^2)\pi(\mu,\sigma^2)} {\int^{\infty}_{-\infty}\int^{\infty}_{0} \pi(\overline{x},Q|\mu,\sigma^2) \mathrm{d}\sigma^2\mathrm{d}\mu}\\ &=\frac {\sigma^{-n}\pi(\mu,\sigma^2) \exp\left\{-\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\}} { \int^{\infty}_{-\infty}\int^{\infty}_{0}\sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2}\left[Q+n(\overline{x}-\mu)^2 \right]\right\}\mathrm{d}\sigma^2\mathrm{d}\mu } \end{align*} π(μ,σ2∣x,Q)=∫−∞∞∫0∞π(x,Q∣μ,σ2)dσ2dμπ(x,Q∣μ,σ2)π(μ,σ2)=∫−∞∞∫0∞σ−nexp{−2σ21[Q+n(x−μ)2]}dσ2dμσ−nπ(μ,σ2)exp{−2σ21[Q+n(x−μ)2]}
对比两个后验密度,可得
π ( μ , σ 2 ∣ x ‾ , Q ) = π ( μ , σ 2 ∣ x ) \pi(\mu,\sigma^2|\overline{x},Q)=\pi(\mu,\sigma^2|x) π(μ,σ2∣x,Q)=π(μ,σ2∣x)
相关文章:
贝叶斯中的充分统计量
内容来源 贝叶斯统计(第二版)中国统计出版社 前两篇笔记简述经典统计中的充分统计量和判断充分统计量的 N e y m a n Neyman Neyman 因子分解定理 而在贝叶斯统计中,充分统计量也有一个充要条件 定理兼定义 设 x ( x 1 , x 2 , ⋯ , x …...
012:ArcGIS Server 10.2安装与站点创建教程
摘要:本文详细介绍地理信息系统服务器软件ArcGIS Server 10.2的安装与站点创建流程。 一、软件介绍 ArcGIS Server 10.2是Esri公司开发的一款强大的地理信息系统(GIS)服务器软件。它支持发布和共享地图、地理数据处理服务及空间分析功能&…...
xlive.dll错误的详细解决办法步骤教程,xlive.dll基本状况介绍
在计算机的众多文件中,“xlive.dll”扮演着独特而重要的角色。所以当你的电脑丢失了xlive.dll文件时,会倒是电脑不能正常运行,那么出现这样的问题有什么办法可以将丢失的xlive.dll进行修复呢?今天这篇文章将和大家聊聊xlive.dll错…...
通俗易懂的餐厅例子来讲解JVM
餐厅版本 JVM(Java虚拟机)可以想象成一个虚拟的计算机,它能够运行Java程序。为了让你更容易理解,我们可以用一个餐厅的比喻来解释JVM: 菜单(Java源代码): 想象一下,Java…...
Python从入门到高手7.3节-列表的常用操作方法
目录 7.3.1 列表常用操作方法 7.3.2 列表的添加 7.3.3 列表的查找 7.3.4 列表的修改 7.3.5 列表的删除 7.3.6 与列表有关的其它操作方法 7.3.7 与10月说再见 7.3.1 列表常用操作方法 列表类型是一种抽象数据类型,抽象数据类型定义了数据类型的操作方法。在本…...
Prompt提示词设计:如何让你的AI对话更智能?
Prompt设计:如何让你的AI对话更智能? 在人工智能的世界里,Prompt(提示词)就像是一把钥匙,能够解锁AI的潜力,让它更好地理解和响应你的需求。今天,我们就来聊聊如何通过精心设计的Pr…...
2024-10月的“冷饭热炒“--解读GUI Agent 之computer use?phone use?——多模态大语言模型的进阶之路
GUI Agent 之computer use?phone use?——多模态大语言模型的进阶之路 1.最新技术事件浅析三、思考和方案设计工具代码部分1.提示词2.工具类API定义,这里主要看computer tool就够了 总结 本文会总结概括这一应用的利弊,然后给出分析和工具代…...
Me 攒的GPT修改论文提示词
没有会员的GPT They demonstrated that QGAN exhibits an exponential advantage over classical methods when using data consisting of samples of measurements made on high-dimensional spaces. 作为related work 时态对吗? 有需要修改的吗?你可…...
关于在vue2中接受后端返回的二进制流并进行本地下载
后端接口返回: 前端需要在两个地方写代码: 1.封装接口处,responseType: blob 2.接收相应处 download() {if (this.selectionList.length 0) {this.$message.error("请选择要导出的数据!");} else {examineruleExport…...
[BUG]warn(f“Failed to load image Python extension: {e}“)的解决办法
在使用LlaMa-Factory工具包时,安装好环境后,输入llamafactory-cli env查看llama-factory的版本等信息时,bash提醒: /home/ubuntu/anaconda3/envs/Llama-Factory/lib/python3.10/site-packages/torchvision/io/image.py:13: UserW…...
配置MUX VLAN 的实验配置
概念和工作原理: MUX VLAN(Multiplex VLAN)是一种高级的VLAN技术,它通过在交换机上实现二层流量隔离和灵活的网络资源控制,提供了一种更为细致的网络管理方式。 概念与工作原理 基本概念: MUX VLAN通过定义主VLAN&am…...
高考相关 APP 案例分享
文章首发于https://qdgithub.com/article/2032 一、核心内容 (一)高考相关 APP 案例 圈友朱康分享高考相关的 APP。提到猿题库,其主要功能有练习册和猿辅导,都是收费的。猿题库出题给学生练习,将易错的总结起来出练习…...
AI的出现对计算机相关类型的博客或论坛的影响
最近越来越感觉到,AI的出现对计算机相关类型的博客是一种从寄生再到蚕食的过程。 在AI没出现之前,大家遇到问题,那一般都是去百度搜索,然后就能找到大神前辈的解答思路,这些解答思路基本都是写在博客或者论坛里的&…...
[LeetCode] 784. 字母大小写全排序
题目描述: 给定一个字符串 s ,通过将字符串 s 中的每个字母转变大小写,我们可以获得一个新的字符串。 返回 所有可能得到的字符串集合 。以 任意顺序 返回输出。 示例 1: 输入:s "a1b2" 输出࿱…...
大数据Azkaban(二):Azkaban简单介绍
文章目录 Azkaban简单介绍 一、Azkaban特点 二、Azkaban组成结构 三、Azkaban部署模式 1、solo-server ode(独立服务器模式) 2、two server mode(双服务器模式) 3、distributed multiple-executor mode(分布式多…...
Vue3_开启全局websocket
1、封装websocket 新建文件夹"socket.ts",路径:"/utils/socket" export default (onMessage: Function) > {let socketUrl ws://171.29.8.218:8080/ems/ws/screen //socket请求地址let socket: WebSocketlet lockReconnect f…...
PTA 社交集群
当你在社交网络平台注册时,一般总是被要求填写你的个人兴趣爱好,以便找到具有相同兴趣爱好的潜在的朋友。一个“社交集群”是指部分兴趣爱好相同的人的集合。你需要找出所有的社交集群。 输入格式 输入在第一行给出一个正整数 N(≤1000&…...
USB Type-C 受电端取电快充协议芯片,支持PD+QC+FCP+SCP+AFC快充协议
前言 随着科技的飞速发展,电子设备对于快速充电的需求日益增加。为了满足这一需求,市场上涌现出了众多快充技术和产品。其中,XSP08Q诱骗取电芯片以其卓越的性能和广泛的应用场景,成为了快充领域的一颗璀璨明星。本文将对XSP08Q P…...
C++ 模板专题 - 参数约束
一:概述: 除了使用SFINAE对模板参数进行约束之外,还可以使用概念(Concepts)来对模板参数进行约束,确保传入的类似满足特定条件。概念(Concepts)是C20中引入的,概念是用于…...
电商行业 | 用好企业培训工具,打造精英团队!
在竞争激烈的电商行业中,人才是企业最宝贵的资源。如何持续提升员工的专业技能和服务水平,打造一支高效、专业的金牌员工队伍,是每个电商企业面临的重要课题。企业培训工具作为提升员工能力的关键手段,正逐渐成为电商行业不可或缺…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
