双曲函数(Hyperbolic functuons)公式
在python等语言里有双曲函数库和反双曲函数库,但是并没有包含所有的双曲函数。以numpy为例子,numpy只提供了sinh、cosh、tanh、arcsinh、arccosh、arctanh六种函数,那么其余的就需要用公式计算了。
转换公式
对于函数库不能直接计算的,我整理出了计算公式:
coth x = 1 tanh x s e c h x = 1 cosh x c s c h x = 1 sinh x a r c c o t h x = a r c t a n ( 1 x ) a r c s e c h x = a r c c o s ( 1 x ) a r c c s c h x = a r c s e c ( 1 x ) \coth x = \frac1{\tanh x} \\ sech\thinspace x = \frac1{\cosh x} \\ csch\thinspace x = \frac1{\sinh x} \\ arccoth\thinspace x = arctan (\frac1x)\\ arcsech\thinspace x = arccos (\frac1x)\\ arccsch\thinspace x = arcsec(\frac1x) cothx=tanhx1sechx=coshx1cschx=sinhx1arccothx=arctan(x1)arcsechx=arccos(x1)arccschx=arcsec(x1)
导数公式
对双曲函数和反双曲函数求导的公式也非常重要,必须要背诵下来。
d d x ( sinh x ) = cosh x d d x ( cosh x ) = sinh x d d x ( tanh x ) = s e c h 2 x d d x ( coth x ) = − c s c h 2 x d d x ( s e c h x ) = − s e c h x t a n h x d d x ( c s c h x ) = − c s c h x c o t h x \frac{d}{dx}(\sinh x)=\cosh x\\ \frac{d}{dx}(\cosh x)=\sinh x\\ \frac{d}{dx}(\tanh x)=sech^2\thinspace x\\ \frac{d}{dx}(\coth x)=-csch^2\thinspace x\\ \frac{d}{dx}(sech x)= -sech\thinspace x \thinspace tanh\thinspace x\\ \frac{d}{dx}(csch x)= -csch\thinspace x \thinspace cot h\thinspace x\\ dxd(sinhx)=coshxdxd(coshx)=sinhxdxd(tanhx)=sech2xdxd(cothx)=−csch2xdxd(sechx)=−sechxtanhxdxd(cschx)=−cschxcothx
接下来是反双曲函数inverse hyperbolic functions的导数公式:
d d x ( a r c s i n h x ) = 1 x 2 + 1 d d x ( a r c c o s h x ) = 1 x 2 − 1 , x > 1 d d x ( a r c t a n h x ) = 1 1 − x 2 d d x ( a r c c o t h x ) = 1 1 − x 2 d d x ( a r c s e c h x ) = − 1 x 1 − x 2 d d x ( a r c c o s h x ) = − 1 ∣ x ∣ 1 + x 2 \frac{d}{dx}(arcsinh \thinspace x)=\frac1{\sqrt{x^2+1}}\\ \frac{d}{dx}(arccosh \thinspace x)=\frac1{\sqrt{x^2-1}},x > 1\\ \frac{d}{dx}(arctanh \thinspace x)=\frac1{{1-x^2}}\\ \frac{d}{dx}(arccoth \thinspace x)=\frac1{{1-x^2}}\\ \frac{d}{dx}(arcsech \thinspace x)=-\frac1{x\sqrt{1-x^2}}\\ \frac{d}{dx}(arccosh \thinspace x)=-\frac1{|x|\sqrt{1+x^2}}\\ dxd(arcsinhx)=x2+11dxd(arccoshx)=x2−11,x>1dxd(arctanhx)=1−x21dxd(arccothx)=1−x21dxd(arcsechx)=−x1−x21dxd(arccoshx)=−∣x∣1+x21
积分公式
上面这些求导公式,反推一下就是积分公式了,但是有些特殊的积分公式,不能直接推导出来,需要记忆:
∫ d x a 2 + x 2 = a r c s i n h ( x a ) + C , a > 0 ∫ d x x 2 − a 2 = a r c c o s h ( x a ) + C , x > a > 0 ∫ d x a 2 − x 2 = { 1 a a r c t a n h ( x a ) + C , x 2 < a 2 1 a a r c c o t h ( x a ) + C , x 2 > a 2 ∫ d x x a 2 − x 2 = − 1 a a r c s e c h ( x a ) + C , 0 < x < a ∫ d x x a 2 + x 2 = − 1 a a r c c s c h ∣ x a ∣ + C , x ≠ 0 , a > 0 \int\frac{dx}{\sqrt{a^2+x^2}}= arcsinh \thinspace (\frac{x}{a})+C,a>0\\ \int\frac{dx}{\sqrt{x^2-a^2}}= arccosh \thinspace (\frac{x}{a})+C,x>a>0\\ \int\frac{dx}{a^2-x^2}= \begin{cases} \frac1a \thinspace arctanh \thinspace (\frac{x}{a})+C,x^2<a^2\\ \frac1a \thinspace arccoth \thinspace (\frac{x}{a})+C,x^2>a^2\\ \end{cases}\\ \int\frac{dx}{x\sqrt{a^2-x^2}}=-\frac1a arcsech \thinspace (\frac{x}{a})+C,0<x<a\\ \int\frac{dx}{x\sqrt{a^2+x^2}}=-\frac1a arccsch \thinspace \lvert \frac{x}{a}\rvert+C,x \neq 0, a>0 ∫a2+x2dx=arcsinh(ax)+C,a>0∫x2−a2dx=arccosh(ax)+C,x>a>0∫a2−x2dx={a1arctanh(ax)+C,x2<a2a1arccoth(ax)+C,x2>a2∫xa2−x2dx=−a1arcsech(ax)+C,0<x<a∫xa2+x2dx=−a1arccsch∣ax∣+C,x=0,a>0
恒等式
最后,我再整理一点恒等式:
c o s h 2 x − s i n h 2 x = 1 s i n h x = 2 s i n h x c o s h x c o s h x = s i n h 2 x + c o s h 2 x c o s h 2 x = c o s h 2 x + 1 2 s i n h 2 x = c o s h 2 x − 1 2 t a n h 2 x = 1 − s e c h 2 x c o t h 2 x = 1 + c s c h 2 x cosh^2 \thinspace x -sinh^2 \thinspace x = 1\\ sinh\thinspace x = 2sinh\thinspace x \thinspace cosh\thinspace x \\ cosh\thinspace x = sinh^2\thinspace x \thinspace + cosh^2\thinspace x \\ cosh^2\thinspace x = \frac{cosh\thinspace 2x +1}2\\ sinh^2\thinspace x = \frac{cosh\thinspace 2x -1}2\\ tanh^2\thinspace x = 1-sech^2x\\ coth^2\thinspace x = 1+csch^2x\\ cosh2x−sinh2x=1sinhx=2sinhxcoshxcoshx=sinh2x+cosh2xcosh2x=2cosh2x+1sinh2x=2cosh2x−1tanh2x=1−sech2xcoth2x=1+csch2x
相关文章:
双曲函数(Hyperbolic functuons)公式
在python等语言里有双曲函数库和反双曲函数库,但是并没有包含所有的双曲函数。以numpy为例子,numpy只提供了sinh、cosh、tanh、arcsinh、arccosh、arctanh六种函数,那么其余的就需要用公式计算了。 转换公式 对于函数库不能直接计算的&#…...

【CSS/SCSS】@layer的介绍及使用方法
目录 基本用法layer 的作用与优点分离样式职责,增强代码可读性和可维护性防止无意的样式冲突精确控制样式的逐层覆盖提高复用性 兼容性实际示例:使用 import 管理加载顺序实际示例:混入与 layer 结合使用 layer 是 CSS 中用于组织和管理样式优…...

我为什么投身于青少年AI编程?——打造生态圈(三)
第五部分 青少年AI编程生态圈 一、生态圈 主要涵盖家庭、社区/中小学、高校高职、主管部门。 1、家庭 我们与社区/中小学一道打造让家长满意的模式。 教得好: 费用少: 家门口: 2、社区/中小学 社区党群服务中心和中小学都有大面积科普…...

出海要深潜,中国手机闯关全球化有了新标杆
经济全球化的大势之下,中国科技企业开拓海外市场已成为一种必然选择。 对于国内手机企业来说,推进全球商业版图扩张,业务潜力巨大,海外市场是今后的关键增长引擎。 当前中国手机厂商在海外市场的发展,有收获也有坎坷…...

百度SEO中的关键词密度与内容优化研究【百度SEO专家】
大家好,我是百度SEO专家(林汉文),在百度SEO优化中,关键词密度和关键词内容的优化对提升页面排名至关重要。关键词的合理布局与内容的质量是确保网页在百度搜索结果中脱颖而出的关键因素。下面我们将从关键词密度和关键…...

如何用fastapi集成pdf.js 的viewer.html ,并支持 mjs
fastapi 框架 集成pdf.js 的 viewer.html?file=***,支持跨域,支持.mjs .wasm .pdf 给出完整示例代码 要在 FastAPI 框架中集成 pdf.js 的 viewer.html,并支持跨域访问以及 .mjs、.wasm、.pdf 文件的正确加载,可以按照以下步骤进行。下面提供一个完整的示例,包括项目结构…...

文件相对路径与绝对路径
前言: 在写代码绘制图像的过程中,发现出现cant read input file的异常,而且输出框没有绘制图片,所以寻找解决方案。先贴上之前写的简洁版绘制图像代码 1.BackGround类 import java.awt.image.BufferedImage;public class BackG…...

Linux 重启命令全解析:深入理解与应用指南
Linux 重启命令全解析:深入理解与应用指南 在 Linux 系统中,掌握正确的重启命令是确保系统稳定运行和进行必要维护的关键技能。本文将深入解析 Linux 中常见的重启命令,包括功能、用法、适用场景及注意事项。 一、reboot 命令 功能简介 re…...

【北京迅为】《STM32MP157开发板嵌入式开发指南》-第六十七章 Trusted Firmware-A 移植
iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器,既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构,主频650M、1G内存、8G存储,核心板采用工业级板对板连接器,高可靠,牢固耐…...
`a = a + b` 与 `a += b` 的区别
在 Java 中,a a b 和 a b 都用于将 b 的值加到 a 上,但它们之间存在一些重要的区别,尤其是在类型转换和操作行为方面。 使用 操作符时,Java 会自动进行隐式类型转换,而使用 则不会。这意味着在 a b 的情况下&am…...
mysqld.log文件过大,清理后不改变所属用户
#1024程序员节# 一、背景 突然有一天,我的mysql报磁盘不足了。仔细查看才发现,是磁盘满了。而MySQL的日志文件占用了91个G.如下所示: [roothost-172-16-14-128 mysql]# ls -lrth 总用量 93G -rw-r----- 1 mysql mysql 1.1G 7月 30 2023 m…...

v4.7+版本用户充值在交易统计中计算双倍的问题修复
app/services/statistic/TradeStatisticServices.php 文件中 $whereInRecharge[recharge_type] no_system; $whereInRecharge[recharge_type] system; app/model/user/UserRecharge.php 中 修改此搜索器内容 public function searchRechargeTypeAttr($query, $value){ if…...

[GXYCTF 2019]Ping Ping Ping 题解(多种解题方式)
知识点: 命令执行 linux空格绕过 反引号绕过 变量绕过 base64编码绕过 打开页面提示 "听说php可以执行系统函数?我来康康" 然后输入框内提示输入 bjut.edu.cn 输入之后回显信息,是ping 这个网址的信息 输入127.0.0.1 因为提示是命令…...
MODSI EVI 数据的时间序列拟合一阶谐波模型
目录 简介 函数 ee.Reducer.linearRegression(numX, numY) Arguments: Returns: Reducer ee.Image.cat(var_args) Arguments: Returns: Image hsvToRgb() Arguments: Returns: Image 代码 结果 简介 MODIS/006/MOD13A1数据是由美国国家航空航天局(NASA)的MODIS…...

Java:String类(超详解!)
一.常用方法 🥏1.字符串构造 字符串构造有三种方法: 📌注意: 1. String是引用类型,内部并不存储字符串本身 如果String是一个引用那么s1和s3应该指向同一个内容,s1和s2是相等的,应该输出两…...

【日志】力扣13.罗马数字转整数 || 解决泛型单例热加载失败问题
2024.10.28 【力扣刷题】 13. 罗马数字转整数 - 力扣(LeetCode)https://leetcode.cn/problems/roman-to-integer/description/?envTypestudy-plan-v2&envIdtop-interview-150这题用模拟的思想可以给相应的字母赋值,官方的答案用的是用一…...

Mybatis高级
系列文章目录 高级Mybatis,一些结果映射,引入新的注解 目录 系列文章目录 文章目录 一、结果映射 1.ResultType 2.ResultMap 基础应用: 二、一对一 嵌套结果和嵌套查询 嵌套结果 嵌套查询 区别 三、一对多 四、多对多 五、注解补充 1.一对一…...
【spark】spark structrued streaming读写kafka 使用kerberos认证
spark版本:2.4.0 官网 Spark --files使用总结 Spark --files理解 一、编写jar import org.apache.kafka.clients.CommonClientConfigs import org.apache.kafka.common.config.SaslConfigs import org.apache.spark.sql.SparkSession import org.apache.spark.sql.streaming.T…...

【脚本】B站视频AB复读
控制台输入如下代码,回车 const video document.getElementsByTagName("video")[0];//获取bpx-player-control-bottom-center容器,更改其布局方式const div document.getElementsByClassName("bpx-player-control-bottom-center")[0];div.sty…...

leetcode - 257. 二叉树的所有路径
257. 二叉树的所有路径 题目 解决 做法一:深度优先搜索 回溯 深度优先搜索(Depth-First Search, DFS)是一种用于遍历或搜索树或图的算法。这种搜索方式会尽可能深地探索每个分支,直到无法继续深入为止,然后回溯到上…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...

C#中用于控制自定义特性(Attribute)
我们来详细解释一下 [AttributeUsage(AttributeTargets.Class, AllowMultiple false, Inherited false)] 这个 C# 属性。 在 C# 中,Attribute(特性)是一种用于向程序元素(如类、方法、属性等)添加元数据的机制。Attr…...
leetcode 386. 字典序排数 中等
给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。 示例 1: 输入:n 13 输出:[1,10,11,12,13,2,3,4,5,6,7,8,9]示例 2: 输入:n 2…...