当前位置: 首页 > news >正文

什么是SMO算法

SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时,传统的二次规划方法效率较低,而 SMO 算法通过分解问题,使得计算变得更加高效。

SVM 的二次规划问题回顾

支持向量机的优化问题本质上是一个 凸二次规划问题,其目标是找到最优的超平面,使得样本点的分类间隔最大。具体来说,SVM 的对偶问题形式为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i αmin21i=1Nj=1NαiαjyiyjK(xi,xj)i=1Nαi

s.t. ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ C \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C s.t.i=1Nαiyi=0,0αiC

其中:

  • α i \alpha_i αi 是拉格朗日乘子。
  • y i y_i yi 是样本点 x i x_i xi 的类别标签。
  • K ( x i , x j ) K(x_i, x_j) K(xi,xj) 是核函数,表示样本之间的相似性。
  • C C C 是惩罚参数。

这个问题涉及到对所有 N N N 个拉格朗日乘子 α \alpha α 进行优化,传统的优化算法如 内点法QP(Quadratic Programming) 方法在处理大规模问题时效率较低。

SMO 算法的基本思想

SMO 算法通过将原始的优化问题分解为多个 子问题 来求解,每次仅优化两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2,其余乘子保持不变。优化两个变量的子问题可以通过简单的解析方法快速求解,从而大大减少了计算的复杂度。

SMO算法的步骤:
  1. 选择两个拉格朗日乘子
    SMO算法每次选择两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 进行优化。选择这两个乘子的原则是,它们不满足 KKT条件,即当前的解不是最优的。

  2. 构建子优化问题
    假设所有其他拉格朗日乘子保持不变,SMO通过优化两个乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 来最小化目标函数。优化问题变成了一个关于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 的二次函数,且由于存在约束 ∑ i = 1 N α i y i = 0 \sum_{i=1}^{N} \alpha_i y_i = 0 i=1Nαiyi=0,因此这两个变量之间有一个线性关系。

  3. 更新两个拉格朗日乘子的值
    SMO 通过解析的方法计算出新的 α 1 \alpha_1 α1 α 2 \alpha_2 α2 值,并根据边界 [ 0 , C ] [0, C] [0,C] 进行截断。计算后的两个新的乘子必须满足所有约束条件。

  4. 更新偏置项 b b b
    每次更新两个拉格朗日乘子后,SMO 需要更新支持向量机中的偏置项 b b b,以保证分类超平面保持正确。

  5. 迭代重复
    SMO 通过不断重复选择一对拉格朗日乘子进行优化,直到所有的乘子都满足 KKT 条件,即算法收敛。

SMO 算法的核心优化过程

SMO 算法的核心在于,它将每次优化问题简化为一个涉及两个变量的二次规划问题。假设我们要优化 α 1 \alpha_1 α1 α 2 \alpha_2 α2,我们可以通过以下步骤来求解:

  1. 计算未约束解:根据优化目标函数,我们可以直接计算出未约束的 α 2 new, unc \alpha_2^{\text{new, unc}} α2new, unc,即不考虑任何约束时最优的 α 2 \alpha_2 α2 值。

α 2 new, unc = α 2 old + y 2 ⋅ E 1 − E 2 K 11 + K 22 − 2 K 12 \alpha_2^{\text{new, unc}} = \alpha_2^{\text{old}} + y_2 \cdot \frac{E_1 - E_2}{K_{11} + K_{22} - 2K_{12}} α2new, unc=α2old+y2K11+K222K12E1E2

其中 E 1 E_1 E1 E 2 E_2 E2 是预测误差, K 11 K_{11} K11 K 22 K_{22} K22 K 12 K_{12} K12 是核函数的值。

  1. α 2 \alpha_2 α2 进行截断:未约束的 α 2 \alpha_2 α2 值可能不满足约束 0 ≤ α 2 ≤ C 0 \leq \alpha_2 \leq C 0α2C,因此需要将其截断为一个满足约束条件的值。

  2. 更新 α 1 \alpha_1 α1:由于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 之间有线性约束关系,更新 α 2 \alpha_2 α2 后可以直接更新 α 1 \alpha_1 α1

  3. 更新偏置项 b b b:每次更新 α 1 \alpha_1 α1 α 2 \alpha_2 α2 后,需要更新偏置项 b b b,以保证分类超平面的正确性。

SMO 算法的优势

  1. 局部优化效率高:每次只需要优化两个变量,计算非常快。通过反复优化不同的拉格朗日乘子对,SMO 可以快速逼近最优解。

  2. 避免矩阵操作:传统的二次规划方法通常需要对大矩阵进行操作,而 SMO 通过只处理两个变量,避免了对整个矩阵的求解,减少了计算复杂度。

  3. 适用于大规模问题:SMO 算法能够很好地处理大规模的数据集,尤其是当样本数量很大时,传统方法难以处理的问题,SMO 也能有效求解。

SMO 算法的局限

  • 选择变量的策略:SMO 的效率在很大程度上取决于选择哪两个乘子来进行优化。如果选择策略不好,算法可能收敛较慢。
  • 对初始点敏感:SMO 对初始值的选择较为敏感,不同的初始值可能导致不同的收敛速度。

总结

SMO 是一种非常有效的算法,特别适合用于大规模支持向量机的训练。通过不断地优化两个拉格朗日乘子,它极大地简化了支持向量机的二次规划问题。由于每次只处理两个变量,SMO 避免了传统方法中的矩阵运算,因此能够处理较大的数据集并且计算速度很快。

相关文章:

什么是SMO算法

SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时&#xff…...

MySQL根据.idb数据恢复脚本,做成了EXE可执行文件

文章目录 1.代码2.Main方法打包3.Jar包打成exe可执行文件4.使用(1.)准备一个表结构一样得数据库(2.)打开软件(3.)输入路径 5.恢复成功 本文档只是为了留档方便以后工作运维,或者给同事分享文档内…...

Spring Boot面试题

1.什么是SpringBoot?它的主要特点是什么? Spring Boot 是一个基于 Spring 框架的开发和构建应用程序的工具,它旨在简化 Spring 应用的初始搭建和开发过程。Spring Boot 提供了一种约定优于配置的方式,通过自动配置和默认值&#…...

原生页面引入Webpack打包JS

Webpack简介 概述: Webpack是一个现代JavaScript应用程序的静态模块打包器。它将应用程序中的每个文件视为一个模块,并通过配置规则来解析这些模块之间的依赖关系,最终将其打包成一个或多个浏览器可以执行的文件。动态加载(Code …...

健康之路押注医药零售:毛利率下滑亏损扩大,医疗咨询人次大幅减少

《港湾商业观察》黄懿 2024年9月13日,健康之路股份有限公司(下称“健康之路”)再次递表港交所,建银国际为独家保荐人。健康之路国内运营主体为健康之路(中国)信息技术有限公司和福建健康之路信息技术有限公…...

【人工智能-初级】第7章 聚类算法K-Means:理论讲解与代码示例

文章目录 一、K-Means聚类简介二、K-Means 聚类的工作原理2.1 初始化簇中心2.2 分配簇标签2.3 更新簇中心2.4 迭代重复2.5 K-Means 算法的目标三、K-Means 聚类的优缺点3.1 优点3.2 缺点四、K 值的选择五、Python 实现 K-Means 聚类5.1 导入必要的库5.2 生成数据集并进行可视化…...

HOT 100 技巧题(136/169/75/31/287)

136. 只出现一次的数字 技巧类型题目,通过异或运算实现 169. 多数元素 三种常见解法:1. 哈希2. 排序3. 投票法 75. 颜色分类 单指针 两次遍历:第一次遍历把所有0都交换到前面,记录最后一个0的位置index,第二次遍…...

什么是时间戳?怎么获取?有什么用?

在 JavaScript 中,时间戳通常表示为自 1970 年 1 月 1 日 00:00:00 UTC 以来的毫秒数。我们可以使用 Date 对象来获取当前时间的时间戳,或者将特定的日期转换为时间戳。在JavaScript中,时间戳通常以毫秒为单位表示。 如何获取时间戳 在Java…...

LeetCode:459重复的子字符串

给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。 示例 1: 输入: s "abab" 输出: true 解释: 可由子串 "ab" 重复两次构成。示例 2: 输入: s "aba" 输出: false示例 3: 输入: s "abcabcabcabc" 输…...

【含开题报告+文档+PPT+源码】基于SSM的旅游与自然保护平台开发与实现

开题报告 围场县拥有丰富的自然景观和野生动植物资源,同时面临着旅游业发展和自然保护之间的平衡问题,通过强调自然保护,这个平台可以教育游客如何尊重和保护当地的生态环境。同时,平台还可以提供关于生态保护的信息,…...

【ANTs】医疗影像工具ANTs多种安装方式教程

介绍ANTs的几种简单的安装教程 基于Releases的安装 Github上选择适配自己操作系统的安装包,链接: link 一般使用最新版本。这里官方操作说明,支持Ubuntu、MacOS、CentOS,但是windows有安装包,不知道怎么用。。。 下载后有两个文件夹,bin和lib,bin里面长这样(图示wind…...

想要音频里的人声,怎么把音频里的人声和音乐分开?

在音频处理领域,将音频中的人声和音乐分开是一个常见需求,尤其对于音乐制作、影视后期以及个人娱乐应用来说,这种分离技术显得尤为重要。随着科技的发展,现在已经有多种方法可以实现这一目的。 一、使用专业音频处理软件 市面上有…...

python代码中通过pymobiledevice3访问iOS沙盒目录获取app日志

【背景】 在进行业务操作过程中,即在app上的一些操作,在日志中会有对应的节点,例如,下面是查看设备实时视频过程对应的一些关键节点: 1、TxDeviceAwakeLogicHelper:wakeStart deviceId CxD2BA11000xxxx …...

Spring AOP 使用方法总结

AOP切面编程的最佳应用场景 记录日志性能监控事务管理处理异常数据验证,验证传入参数的正确性(一般不用这个方法做,而是用拦截器) spring提供了以下注解供开发者使用,编写AOP程序 Aspect 申明切面Pointcut 切点&#…...

LeetCode 每日一题 2024/10/21-2024/10/27

记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步 目录 10/21 910. 最小差值 II10/22 3184. 构成整天的下标对数目 I10/23 3185. 构成整天的下标对数目 II10/24 3175. 找到连续赢 K 场比赛的第一位玩家10/25 3180. 执行操作可获得…...

不到1500元的I卡可以玩转3A大作吗?撼与科技Intel Arc A750显卡游戏性能实

一、前言 还记得2022年10月的时候,英特尔发布了Arc A750和A770显卡,和此前所发布的DG1、A380不同,这两张显卡可以说是真正意义上的游戏显卡。不知不觉间,两年已经过去了,在这两年期间,英特尔不仅在积极地打…...

STK与MATLAB互联——仿真导航卫星与地面用户间距离和仰角参数

文章目录 构建GPS星座创建单个PRN的GPS卫星创建GPS星座,并为其添加发射机 北斗星座构建搭建低轨铱星星座构建一颗轨道高度为800km/1000km/1200km的低轨卫星构建一颗轨道高度为800km/1000km/1200km的低轨卫星建立地面站,可见性分析确定地面站坐标分析单颗…...

js面试问题笔记(一)

一.热门js面试 1.简述同步和异步的区别? 同步: 浏览器访问服务器请求,用户看到页面刷新 ,重新发请求,等请求完,页面刷新,新内容出现,用户看到新内容,进行下一步操作 异步: 浏览器访问服务器请求,用户正常操作,浏览器后端进行请求,等请求完,页面不刷新,新内容也会出现,用户看到…...

pip 和 pipx 的主要区别?

特性pippipx用途用于安装Python库或命令行应用程序,可以安装带entry points的库专门用于安装和管理Python命令行工具,每个工具都在隔离的虚拟环境中运行虚拟环境不自动创建虚拟环境,需要手动使用 venv 或 virtualenv 创建自动为每个安装的工具…...

4457M数字示波器

_XLT新利通_ 4457M数字示波器 带宽500MHz到3GHz 4457M系列数字示波器产品,包含4457DM/EM/FM/GM四个产品型号,模拟通道数4、8个,带宽500MHz到3GHz,最高采样率10GSa/s,垂直分辨率8bit,最大存储深度2Gpts。…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...