前端算法:树(力扣144、94、145、100、104题)
目录
一、树(Tree)
1.介绍
2.特点
3.基本术语
4.种类
二、树之操作
1.遍历
前序遍历(Pre-order Traversal):访问根节点 -> 遍历左子树 -> 遍历右子树。
中序遍历(In-order Traversal):遍历左子树 -> 访问根节点 -> 遍历右子树(用于 BST 时可得到排序结果)。
后序遍历(Post-order Traversal):遍历左子树 -> 遍历右子树 -> 访问根节点。
层序遍历(Level-order Traversal):逐层访问树的节点,通常使用队列实现。
2.插入和删除
3.查找
三、树的力扣算法实战
1.144. 二叉树的前序遍历
2.94. 二叉树的中序遍历
3.145. 二叉树的后序遍历
4.100. 相同的树
5.104. 二叉树的最大深度
一、树(Tree)

1.介绍
树(Tree)是一种重要的数据结构,广泛应用于计算机科学中。它由节点组成,并且有一个根节点,其他节点通过边连接形成层级关系。
2.特点
- 层级关系:树结构是分层的,根节点位于顶层,每个节点可以有多个子节点。
- 无环性:树中不存在环,即从一个节点出发不可能回到该节点。
- 节点的子节点:每个节点可以有零个或多个子节点。
3.基本术语
- 根节点:树的顶层节点。
- 叶子节点:没有子节点的节点。
- 子节点:某个节点直接连接的下层节点。
- 兄弟节点:同一父节点的子节点。
- 高度:树的高度是从根节点到最深叶子节点的最长路径的边数。
4.种类
-
树(Tree):一般的树结构,没有特定的限制。
-
二叉树(Binary Tree):每个节点最多有两个子节点。
- 完全二叉树(Complete Binary Tree):除了最后一层外,其他层的节点都填满,最后一层的节点尽量向左排列。
- 满二叉树(Full Binary Tree):每个节点要么是叶子节点,要么有两个子节点。
- 非完全二叉树(Incomplete Binary Tree):不是完全二叉树的任意形式。
-
二叉搜索树(Binary Search Tree, BST):一种特殊的二叉树,左子树的所有节点值小于根节点,右子树的所有节点值大于根节点。
-
自平衡树(Self-balancing Tree):如 AVL 树和红黑树,保持树的高度平衡以优化查找效率。
-
N 叉树(N-ary Tree):每个节点可以有 N 个子节点的树结构。
-
Trie(前缀树):一种用于存储字符串的树,常用于快速查找和前缀匹配。
二、树之操作
1.遍历
前序遍历(Pre-order Traversal):访问根节点 -> 遍历左子树 -> 遍历右子树。
// 前序遍历preOrderTraversal(node) {if (node) {console.log(node.value);this.preOrderTraversal(node.left);this.preOrderTraversal(node.right);}}
中序遍历(In-order Traversal):遍历左子树 -> 访问根节点 -> 遍历右子树(用于 BST 时可得到排序结果)。
// 中序遍历inOrderTraversal(node) {if (node) {this.inOrderTraversal(node.left);console.log(node.value);this.inOrderTraversal(node.right);}}
后序遍历(Post-order Traversal):遍历左子树 -> 遍历右子树 -> 访问根节点。
// 后序遍历postOrderTraversal(node) {if (node) {this.postOrderTraversal(node.left);this.postOrderTraversal(node.right);console.log(node.value);}}
层序遍历(Level-order Traversal):逐层访问树的节点,通常使用队列实现。
// 层序遍历levelOrderTraversal() {if (!this.root) return;const queue = [this.root];while (queue.length > 0) {const node = queue.shift();console.log(node.value);if (node.left) queue.push(node.left);if (node.right) queue.push(node.right);}}
2.插入和删除
插入:在二叉搜索树中,插入新节点时需要找到合适的位置,保证 BST 的性质。
// 插入insert(value) {const newNode = new TreeNode(value);if (this.root === null) {this.root = newNode;return;}this.insertNode(this.root, newNode);}insertNode(node, newNode) {if (newNode.value < node.value) {if (node.left === null) {node.left = newNode;} else {this.insertNode(node.left, newNode);}} else {if (node.right === null) {node.right = newNode;} else {this.insertNode(node.right, newNode);}}}
删除:删除节点时可能需要重新调整树结构,以保持树的性质,尤其在 BST 中。
// 删除delete(value) {this.root = this.deleteNode(this.root, value);}deleteNode(node, value) {if (node === null) {return null;}if (value < node.value) {node.left = this.deleteNode(node.left, value);} else if (value > node.value) {node.right = this.deleteNode(node.right, value);} else {// 找到要删除的节点if (node.left === null && node.right === null) {return null; // 无子节点}if (node.left === null) {return node.right; // 只有右子节点}if (node.right === null) {return node.left; // 只有左子节点}// 找到右子树中的最小节点const minNode = this.findMinNode(node.right);node.value = minNode.value; // 替换值node.right = this.deleteNode(node.right, minNode.value); // 删除最小节点}return node;}
3.查找
在树中查找节点的过程依赖于树的性质。对于二叉搜索树,可以通过比较节点值快速找到目标节点。
search(value) {return this.searchNode(this.root, value);}searchNode(node, value) {if (node === null) {return false;}if (value === node.value) {return true;}return value < node.value? this.searchNode(node.left, value): this.searchNode(node.right, value);}
三、树的力扣算法实战
1.144. 二叉树的前序遍历
题目描述:给你二叉树的根节点 root ,返回它节点值的 前序 遍历。
示例 1:
输入:root = [1,null,2,3]
输出:[1,2,3]
示例 2:
输入:root = [1,2,3,4,5,null,8,null,null,6,7,9]
输出:[1,2,4,5,6,7,3,8,9]
示例 3:
输入:root = []
输出:[]
示例 4:
输入:root = [1]
输出:[1]
解题思路:将二叉树进行先序遍历(中左右:根节点->左子树->右子树)
代码:
var preorderTraversal = function(root) {const arr = []const fun = (node) =>{if(node){arr.push(node.val)fun(node.left)fun(node.right)}}fun(root)return arr
};
2.94. 二叉树的中序遍历
题目描述:给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]示例 2:
输入:root = [] 输出:[]示例 3:
输入:root = [1] 输出:[1]
解题思路:将二叉树进行中序遍历(左中右:左子树->根节点->右子树)
代码:
var inorderTraversal = function(root) {const arr = []const fun = (root) =>{if(!root) returnfun(root.left)arr.push(root.val)fun(root.right)}fun(root)return arr
};
3.145. 二叉树的后序遍历
题目描述:给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。
示例 1:
输入:root = [1,null,2,3]
输出:[3,2,1]
示例 2:
输入:root = [1,2,3,4,5,null,8,null,null,6,7,9]
输出:[4,6,7,5,2,9,8,3,1]
示例 3:
输入:root = []
输出:[]
示例 4:
输入:root = [1]
输出:[1]
解题思路:将二叉树进行中序遍历(左右中:左子树->右子树->根节点)
代码:
var postorderTraversal = function(root) {const arr = []const fun = (root) =>{if(!root) returnfun(root.left)fun(root.right)arr.push(root.val)}fun(root)return arr
};
4.100. 相同的树
题目描述:
给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例 1:
输入:p = [1,2,3], q = [1,2,3] 输出:true示例 2:
输入:p = [1,2], q = [1,null,2] 输出:false示例 3:
输入:p = [1,2,1], q = [1,1,2] 输出:false
解题思路:首先判断两个节点是否都为空,是则返回true;如果一个为空一个不为空,则返回false,再判断两个节点的val值是否相同,不同返回false,依次进行传入两棵树的左节点和右节点
代码:
var isSameTree = function(p, q) {if(p === null && q === null) return true;if(p === null || q === null) return falseif(p.val !== q.val) return falsereturn isSameTree(p.left,q.left) && isSameTree(p.right,q.right)
};
5.104. 二叉树的最大深度
题目描述:
给定一个二叉树 root ,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:3示例 2:
输入:root = [1,null,2] 输出:2
解题思路: 首先判断树是否为空,空则返回0,将树放入栈中,以栈的长度为值进行遍历,将栈的长度定义一个值len,每循环一次计数器num+1,len--,依次弹出stack的栈中元素,判断是否有左右子节点,在将其压入栈中,最后返回num值
代码
var maxDepth = function(root) {if(!root) return 0const stack = [root]let num = 0while(stack.length){let len = stack.lengthnum++while(len--){const o = stack.shift()o.left && stack.push(o.left)o.right && stack.push(o.right)}}return num
};
相关文章:
前端算法:树(力扣144、94、145、100、104题)
目录 一、树(Tree) 1.介绍 2.特点 3.基本术语 4.种类 二、树之操作 1.遍历 前序遍历(Pre-order Traversal):访问根节点 -> 遍历左子树 -> 遍历右子树。 中序遍历(In-order Traversal…...
深度学习速通系列:如何使用bert进行超长中文文本命名实体识别
要将超长中文文本按最大 BERT 输入长度进行分割,并使用 bert-chinese-ner 模型进行命名实体识别,可以遵循以下步骤。以下是一个 Python 代码示例,利用 Hugging Face 的 transformers 库来实现: 安装必要的库 如果你还没有安装 Hu…...
【感知模块】深度神经网络实现运动预测
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言运动预测(Motion Prediction)感知中的运动预测(深度神经网络)前言 认知有限,望大家多多包涵,有什么问题也希望能够与大家多交流,共同成长! …...
智能优化算法-蝗虫优化算法(GOA)(附源码)
目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1.内容介绍 蝗虫优化算法 (Grasshopper Optimization Algorithm, GOA) 是一种基于群体智能的元启发式优化算法,由Saremi等人于2017年提出。GOA模拟了蝗虫群的觅食、迁徙和社会互动行为,用于解决复杂…...
TVM前端研究--Relay
文章目录 深度学习IR梳理1. IR属性2. DL前端发展3. DL编译器4. DL编程语言Relay的主要内容一、Expression in Relay1. Dataflow and Control Fragments2. 变量3. 函数3.1 闭包3.2 多态和类型关系3.3. Call4. 算子5. ADT Constructors6. Moudle和Global Function7. 常量和元组8.…...
STM32外设应用
STM32是基于ARM Cortex-M系列内核的微控制器,具有高性能、低功耗和丰富的外设资源。其广泛应用于物联网、工业控制、智能家居和嵌入式系统等领域。本文将简要介绍STM32常用外设的功能及应用实例,帮助大家更好地理解和使用STM32外设。 1. GPIO࿰…...
Docker 部署 Jaeger
Jaeger 的主要作用如下: 分布式追踪 Jaeger 是一个开源的分布式追踪系统,用于监控和排查微服务架构中的复杂问题。它可以跟踪请求在不同服务之间的传播路径,帮助开发者理解系统中各个组件之间的调用关系。 性能分析 通过收集和分析请求的执行…...
使用Python和OpenCV实现火焰检测
使用Python和OpenCV实现火焰检测 项目解释: 此 Python 代码是使用 OpenCV、线程、声音和电子邮件功能的火灾探测系统的简单示例。 以下是它的功能的简单描述: 导入库:代码首先导入必要的库: cv2:用于图像和视频处理…...
uniapp基础笔记
与html区别 uni-app简单来说是 vue的语法 小程序的api。 文件结构 html <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title><script type"text/javascript"></script><style t…...
函数基础,定义与调用。作用域,闭包函数
一、函数的定义与调用 函数是一段可重复使用的代码块,用于执行特定任务或计算等功能。它可以接受输入参数(形参),并根据参数执行操作后返回结果。 函数的定义 例如在 JavaScript 中可以这样定义函数: function fun…...
【Linux网络编程】 --- Linux权限理解
Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: Linux网络编程 🏠 shell命令以及运行原理 📌 引入例子理解shell 假设八里村有一个人叫张三,他的父亲是这个村的村长…...
Qt/C++ 调用迅雷开放下载引擎(ThunderOpenSDK)下载数据资源
目录导读 前言ThunderOpenSDK 简介参考 xiaomi_Thunder_Cloud 示例ThunderOpenSDK 下载问题 前言 在对以前老版本的exe执行程序进行研究学习的时候,发现以前的软件是使用的ThunderOpenSDK这个迅雷开放下载引擎进行的项目数据下载,于是在网上搜索一番找到…...
深入详解 Java - Spring MVC
在 Java 企业级开发领域,Spring MVC 是一个极为重要的框架,它为构建强大、灵活且高效的 Web 应用程序提供了坚实的基础。本文将深入详解 Java 之 Spring MVC,带你领略其强大之处。 一、Spring MVC 概述 Spring MVC 是 Spring 框架的一个重要模块,全称为 Spring Web Model-V…...
Spring Boot技术中小企业设备管理系统设计与实践
6系统测试 6.1概念和意义 测试的定义:程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为: 目的:发现程序的错误; 任务:通过在计算机上执行程序,暴露程序中潜在的错误。 另一个…...
动态渲染组件
引言 在现代前端开发中,动态渲染组件是一种常见的需求,特别是在构建复杂的应用程序时。动态渲染组件允许我们在运行时根据不同的条件或数据来决定渲染哪个组件,从而提高代码的灵活性和可维护性。本文将详细介绍如何在 Vue.js 中实现动态渲染…...
一个神秘的新图像生成模型red_panda出现 轻松击败Midjourney与OpenAI
一个神秘的新图像生成模型在众包人工分析基准测试中击败了 Midjourney、黑森林实验室和 OpenAI 的模型。这个名为"red_panda"的模型在人工分析的文本到图像排行榜上领先排名第二的黑森林实验室的 Flux1.1 Pro 约 40 个 Elo 分数。 Artificial Analysis 使用 Elo&…...
云计算平台上的DevOps实践
文章目录 什么是DevOps云计算平台上的DevOps优势自动化部署弹性伸缩地理分布 实施DevOps的关键组件版本控制系统持续集成/持续交付工具配置管理工具监控和日志管理 实践案例使用AWS CodePipeline进行持续集成/持续交付利用AWS Auto Scaling实现弹性使用AWS CloudFormation进行基…...
JS新功能之:全新 Set 方法
JavaScript 的内置Set类将新增一些方法,以便执行集合论中常见的操作,包括: Set.prototype.intersection(other):返回两个集合的交集。 Set.prototype.union(other):返回两个集合的并集。 Set.prototype.difference(o…...
Flume的安装配置
一、上传解压 tar -zxvf apache-flume-1.9.0-bin.tar.gz -C /usr/local/soft/#***在环境变量中增加如下命令,可以使用 soft 快速切换到 /usr/local/soft***alias softcd /usr/local/soft/ 二、配置环境变量 soft #重命名 mv apache-flume-1.9.0-bin/ flume-1.9.0…...
3.1.3 虚存页面的映射
3.1.3 虚存页面的映射 文章目录 3.1.3 虚存页面的映射3.1.3 虚存页面的映射MmCreateVirtualMapping()MmCreateVirtualMappingUnsafe()MiFlushTlb()MmDeleteVirtualMapping()MmPageOu…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...




