详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute
目录
- 前言
- 1. 基本知识
- 2. Demo
前言
原先的permute推荐阅读:详细分析Pytorch中的permute基本知识(附Demo)
1. 基本知识
transpose 是 PyTorch 中用于交换张量维度的函数,特别是用于二维张量(矩阵)的转置操作,常用于线性代数运算、深度学习模型的输入和输出处理等
基本知识如下
- 功能:交换张量的两个维度
- 输入:一个张量和两个要交换的维度的索引
- 输出:具有新维度顺序的张量
原理分析如下:
transpose 的核心原理是通过交换指定维度的方式改变张量的形状
例如,对于一个二维张量 (m, n),调用 transpose(0, 1) 会返回一个形状为 (n, m) 的新张量,其元素顺序经过了调整
- 高维张量: 对于高维张量,transpose 只会影响指定的两个维度,而其他维度保持不变
- 内存视图:与 permute 类似,transpose 返回的是原始张量的一个视图,不会进行数据复制
2. Demo
示例 1: 基本用法
import torch# 创建一个 3x4 的矩阵
matrix = torch.randn(3, 4)
print("原始矩阵形状:", matrix.shape)# 使用 transpose 交换维度
# 将矩阵的维度从 (3, 4) 变为 (4, 3)
transposed_matrix = matrix.transpose(0, 1)
print("转置后矩阵形状:", transposed_matrix.shape)
截图如下:

示例 2: 高维张量的转置
import torch# 创建一个 2x3x4 的张量
tensor = torch.randn(2, 3, 4)
print("原始张量形状:", tensor.shape)# 使用 transpose 交换第二和第三维
# 将张量的维度从 (2, 3, 4) 变为 (2, 4, 3)
transposed_tensor = tensor.transpose(1, 2)
print("转置后张量形状:", transposed_tensor.shape)
截图如下:

示例 3: 在深度学习中的应用
import torch# 创建一个假设的批量数据 (批量, 高度, 宽度, 通道)
batch_tensor = torch.randn(5, 256, 256, 3)
print("原始批量形状:", batch_tensor.shape)# 将通道和宽度维度交换
# 适用于某些模型的输入
batch_transposed = batch_tensor.transpose(2, 3)
print("转置后批量形状:", batch_transposed.shape)
截图如下:

基本的注意事项如下:
- 只支持交换两个维度: transpose 只能同时交换两个维度,而无法一次性处理多个维度
- 数据不复制:返回的是原始张量的视图,因此内存开销较小
- 维度索引:确保指定的维度索引在张量的维度范围内,否则会引发错误
相关文章:
详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute
目录 前言1. 基本知识2. Demo 前言 原先的permute推荐阅读:详细分析Pytorch中的permute基本知识(附Demo) 1. 基本知识 transpose 是 PyTorch 中用于交换张量维度的函数,特别是用于二维张量(矩阵)的转置操…...
初识WebGL
思路: 构建<canvas>画布节点,获取其的实例。使用getWebGLContext() 拿到画布上下文。拿到上下文用clearColor() 设置背景颜色。最后清空canvas画布,是为了清除颜色缓冲区。 html结构: <!DOCTYPE html> <html lang"en&…...
【力扣】Go语言回溯算法详细实现与方法论提炼
文章目录 一、引言二、回溯算法的核心概念三、组合问题1. LeetCode 77. 组合2. LeetCode 216. 组合总和III3. LeetCode 17. 电话号码的字母组合4. LeetCode 39. 组合总和5. LeetCode 40. 组合总和 II小结 四、分割问题6. LeetCode 131. 分割回文串7. LeetCode 93. 复原IP地址小…...
「C/C++」C/C++ 之 第三方库使用规范
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
六、元素应用CSS的习题
题目一: 使用CSS样式对页面元素加以修饰,制作“ 旅游攻略 ”网站。如下图所示 运行效果: 代码: <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>旅游攻略</title><…...
正式入驻!上海斯歌BPM PaaS管理软件等产品入选华为云联营商品
近日,上海斯歌旗下BPM PaaS管理软件(NBS)等多款产品入选华为云云商店联营商品,上海斯歌正式成为华为云联营商品合作伙伴。用户登录华为云云商店即可采购上海斯歌的BPM PaaS产品及配套服务。通过联营模式,双方合作能够深…...
使用 Axios 上传大文件分片上传
背景 在上传大文件时,分片上传是一种常见且有效的策略。由于大文件在上传过程中可能会遇到内存溢出、网络不稳定等问题,分片上传可以显著提高上传的可靠性和效率。通过将大文件分割成多个小分片,不仅可以减少单次上传的数据量,降…...
Nginx+Lua脚本+Redis 实现自动封禁访问频率过高IP
1 、安装OpenResty 安装使用 OpenResty,这是一个集成了各种 Lua 模块的 Nginx 服务器,是一个以Nginx为核心同时包含很多第三方模块的Web应用服务器,使用Nginx的同时又能使用lua等模块实现复杂的控制。 (1)安装编译工具…...
PART 1 数据挖掘概论 — 数据挖掘方法论
目录 数据库知识发掘步骤 数据挖掘技术的产业标准 CRISP-DM SEMMA 数据库知识发掘步骤 数据库知识发掘(Knowledge Discovery in Database,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。 知识发掘流程(Knowledge Discovery Process)包括属性选择…...
Centos安装ffmpeg的方法
推荐第一个,不要自己编译安装,太难了,坑多。 在 CentOS 上安装 FFmpeg 有几种方法,以下是两种常见的方法: ### 方法一:使用 RPM Fusion 仓库安装 1. **启用 RPM Fusion 仓库**: RPM Fusion 是一个第三方仓库,提供了许多 CentOS 官方仓库中没有的软件包。 ```bash…...
理解SQL中通配符的使用
前言 SQL 是一种标准化的结构化查询语言,涉及结构化查询时,高效地检索数据至关重要。而通配符是SQL中模式匹配的有效的方法。使用通配符可以更轻松地检索到所需的确切数据。通配符允许我们定义多功能查询条件。本文将 介绍SQL通配符的基础知识及用法。 …...
SpringBoot篇(简化操作的原理)
目录 一、代码位置 二、统一版本管理(parent) 三、提供 starter简化 Maven 配置 四、自动配置 Spring(引导类) 五、嵌入式 servlet 容器 一、代码位置 二、统一版本管理(parent) SpringBoot项目都会继…...
Cesium的模型(ModelVS)顶点着色器浅析
来自glTF和3D Tiles的模型会走ModelVS.glsl。这个文件不单独是把模型顶点转换为屏幕坐标,还包含了丰富的处理过程。 Cesium是根据定义的Define判断某个行为是否需要被执行,比如#define HAS_SILHOUETTE,说明需要计算模型外轮廓线。 Cesium的…...
机器人领域中的scaling law:通过复现斯坦福机器人UMI——探讨数据规模化定律(含UMI的复现关键)
前言 在24年10.26/10.27两天,我司七月在线举办的七月大模型机器人线下营时,我们带着大家一步步复现UMI,比如把杯子摆到杯盘上(其中1-2位学员朋友还亲自自身成功做到该任务) 此外,我还特地邀请了针对UMI做了改进工作的fastumi作者…...
C++之多态的深度剖析
目录 前言 1.多态的概念 2.多态的定义及实现 2.1多态的构成条件 2.1.1重要条件 2.1.2 虚函数 2.1.3 虚函数的重写/覆盖 2.1.4 选择题 2.1.5 虚函数其他知识 协变(了解) 析构函数的重写 override 和 final关键字 3. 重载,重写&…...
Microsoft Office PowerPoint制作科研论文用图
Microsoft Office PowerPoint制作科研论文用图 1. 获取高清图片2. 导入PPT3. 另存为“增强型windows元文件”emf格式4. 画图剪裁 1. 获取高清图片 这里指通过绘图软件画分辨率高的图片,我一般使用python画dpi600的图片。 2. 导入PPT 新建一个PPT(注意&a…...
go语言进阶之并发基础
并发 什么是并发,也就是我们常说的多线程,多个程序同时执行。 并发的基础 线程和进程 进程 进程是操作系统中一个重要的概念,指的是一个正在运行的程序的实例。它包含程序代码、当前活动的状态、变量、程序计数器和内存等资源。进程是系…...
po、dto、vo的使用场景
现在项目中有两类模型类:DTO数据传输对象、PO持久化对象,DTO用于接口层向业务层之间传输数据,PO用于业务层与持久层之间传输数据,有些项目还会设置VO对象,VO对象用在前端与接口层之间传输数据,如下图&#…...
聊一聊Elasticsearch的一些基本信息
一、Elasticsearch是什么 Elasticsearch简称ES,是一款分布式搜索引擎。它是在Apache Lucene基础之上采用Java语言开发的。 Elasticsearch的官方网站对它的解释是:Elasticsearch是一个分布式、RESTful的搜索和数据分析引擎。 通过上边的官方解释&#…...
Unity 两篇文章熟悉所有编辑器拓展关键类 (上)
本专栏基础资源来自唐老狮和siki学院,仅作学习交流使用,不作任何商业用途,吃水不忘打井人,谨遵教诲 编辑器扩展内容实在是太多太多了(本篇就有五千字) 所以分为两个篇章而且只用一些常用api举例,…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
