当前位置: 首页 > news >正文

绘制线性可分支持向量机决策边界图 代码解析

### 绘制线性可分支持向量机决策边界图
def plot_classifer(model, X, y):# 超参数边界x_min = -7x_max = 12y_min = -12y_max = -1step = 0.05# meshgridxx, yy = np.meshgrid(np.arange(x_min, x_max, step),np.arange(y_min, y_max, step))# 模型预测z = model.predict(np.c_[xx.ravel(), yy.ravel()])# 定义color mapcmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])cmap_bold = ListedColormap(['#FF0000', '#003300'])z = z.reshape(xx.shape)plt.figure(figsize=(8, 5), dpi=96)plt.pcolormesh(xx, yy, z, cmap=cmap_light)plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)plt.show()

该代码用于绘制线性可分支持向量机(SVM)的决策边界图。通过在二维坐标系中可视化支持向量机的分类结果,我们可以清楚地看到决策边界是如何将不同类别的样本分开的。接下来,将详细解释代码的各个部分以及它是如何工作的。

代码详细解释

(1) 定义决策边界的绘制范围
x_min = -7
x_max = 12
y_min = -12
y_max = -1
step = 0.05

这些变量定义了绘制决策边界的坐标范围:

  • x_minx_max:x 轴的最小和最大值,表示横向坐标的范围。
  • y_miny_max:y 轴的最小和最大值,表示纵向坐标的范围。
  • step:绘制网格的步长,决定了网格的密度,越小的步长会导致决策边界更加细致。
(2) 创建网格点
xx, yy = np.meshgrid(np.arange(x_min, x_max, step),np.arange(y_min, y_max, step))
  • np.meshgrid():该函数生成了一个二维的网格,其中每个点代表输入空间的一个坐标点。通过定义网格,我们可以对整个输入空间的每个点进行分类。
  • xxyy:分别是网格的 x 和 y 坐标。

例如,如果步长为 0.05 且范围为 -7 到 12,网格的 x 坐标将是从 -7 到 12 间隔 0.05 的所有点,y 坐标将是从 -12 到 -1 间隔 0.05 的所有点。

(3) 对网格中的点进行预测
z = model.predict(np.c_[xx.ravel(), yy.ravel()])
  • np.c_:将 xxyy 坐标点展平(通过 ravel() 函数),并将这些点组合为一对对的坐标点输入到模型中。
  • model.predict():使用训练好的 SVM 模型对网格中的每一个点进行预测,判断它属于哪个类别。
(4) 定义颜色映射
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
cmap_bold = ListedColormap(['#FF0000', '#003300'])
  • cmap_light:定义浅色的颜色映射,用于背景显示不同类别区域。
  • cmap_bold:定义深色的颜色映射,用于显示训练数据点的颜色。
(5) 绘制决策边界和样本点
z = z.reshape(xx.shape)
plt.figure(figsize=(8, 5), dpi=96)
plt.pcolormesh(xx, yy, z, cmap=cmap_light)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.show()
  • z.reshape(xx.shape):将预测结果 z 重新调整为与 xx 的形状相同,以便后续的可视化。
  • plt.pcolormesh():使用 pcolormesh() 函数绘制背景颜色,表示每个区域的类别。
  • plt.scatter():用 scatter() 函数绘制数据点,用深色显示训练数据。
  • plt.show():显示绘制的图像。

代码作用总结

这段代码通过以下步骤绘制了线性可分支持向量机的决策边界:

  1. 定义网格:通过 np.meshgrid() 函数创建输入空间的网格点。
  2. 模型预测:使用 model.predict() 函数对网格中的每个点进行预测,确定该点的类别。
  3. 绘制决策边界:使用 plt.pcolormesh() 函数绘制每个区域的背景颜色,代表不同类别的区域。
  4. 绘制样本点:使用 plt.scatter() 函数绘制训练样本,显示真实的分类结果。

使用示例

假设你已经训练了一个 SVM 模型,并且有一些二维数据,那么你可以这样调用函数 plot_classifer()

# 假设我们有训练好的 SVM 模型和数据
svm_model = Hard_Margin_SVM()
svm_model.fit(X, y)# 绘制决策边界
plot_classifer(svm_model, X, y)

总结

通过这段代码,你可以直观地看到 SVM 如何将样本分为两个类别,并展示它的分类边界。

相关文章:

绘制线性可分支持向量机决策边界图 代码解析

### 绘制线性可分支持向量机决策边界图 def plot_classifer(model, X, y):# 超参数边界x_min -7x_max 12y_min -12y_max -1step 0.05# meshgridxx, yy np.meshgrid(np.arange(x_min, x_max, step),np.arange(y_min, y_max, step))# 模型预测z model.predict(np.c_[xx.ra…...

No.23 笔记 | WEB安全 - 任意文件漏洞 part 5

本文全面且深入地探讨了文件上传漏洞相关知识。从基础概念出发,清晰地阐述了文件上传漏洞的定义及其产生的本质原因,同时列出了该漏洞成立的必要条件。详细说明了文件上传漏洞可能对服务器控制权、网站安全以及业务运营带来的严重危害。 文中还深入解析了…...

EasyPlayer.js网页播放器,支持FLV、HLS、WebSocket、WebRTC、H.264/H.265、MP4、ts各种音视频流播放

EasyPlayer.js功能: 1、支持解码H.264视频(Baseline, Main, High Profile全支持,支持解码B帧视频) 2、支持解码H.265视频(flv id 12) 3、支持解码AAC音频(LC,HE,HEv2 Profile全支持) 4、支持解码MP3音频以及Speex音频格式 5、可…...

WPF数据绑定的五大模式

WPF(Windows Presentation Foundation)是微软推出的一种用于构建Windows用户界面的UI框架。它支持数据绑定,允许开发者将UI元素与数据源绑定,从而实现数据和界面的自动同步。WPF数据绑定有几种不同的模式, 以下是五种…...

从零到一:大学新生编程入门攻略与成长指南

文章目录 每日一句正能量前言编程语言选择:为大学新生量身定制Python:简单而强大的选择JavaScript:Web开发的基石Java:面向对象的经典C#:微软的全能选手 学习资源推荐:编程学习的宝藏在线课程教程和文档书籍…...

详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute

目录 前言1. 基本知识2. Demo 前言 原先的permute推荐阅读:详细分析Pytorch中的permute基本知识(附Demo) 1. 基本知识 transpose 是 PyTorch 中用于交换张量维度的函数,特别是用于二维张量(矩阵)的转置操…...

初识WebGL

思路&#xff1a; 构建<canvas>画布节点&#xff0c;获取其的实例。使用getWebGLContext() 拿到画布上下文。拿到上下文用clearColor() 设置背景颜色。最后清空canvas画布,是为了清除颜色缓冲区。 html结构&#xff1a; <!DOCTYPE html> <html lang"en&…...

【力扣】Go语言回溯算法详细实现与方法论提炼

文章目录 一、引言二、回溯算法的核心概念三、组合问题1. LeetCode 77. 组合2. LeetCode 216. 组合总和III3. LeetCode 17. 电话号码的字母组合4. LeetCode 39. 组合总和5. LeetCode 40. 组合总和 II小结 四、分割问题6. LeetCode 131. 分割回文串7. LeetCode 93. 复原IP地址小…...

「C/C++」C/C++ 之 第三方库使用规范

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「C/C」C/C程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...

六、元素应用CSS的习题

题目一&#xff1a; 使用CSS样式对页面元素加以修饰&#xff0c;制作“ 旅游攻略 ”网站。如下图所示 运行效果&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>旅游攻略</title><…...

正式入驻!上海斯歌BPM PaaS管理软件等产品入选华为云联营商品

近日&#xff0c;上海斯歌旗下BPM PaaS管理软件&#xff08;NBS&#xff09;等多款产品入选华为云云商店联营商品&#xff0c;上海斯歌正式成为华为云联营商品合作伙伴。用户登录华为云云商店即可采购上海斯歌的BPM PaaS产品及配套服务。通过联营模式&#xff0c;双方合作能够深…...

使用 Axios 上传大文件分片上传

背景 在上传大文件时&#xff0c;分片上传是一种常见且有效的策略。由于大文件在上传过程中可能会遇到内存溢出、网络不稳定等问题&#xff0c;分片上传可以显著提高上传的可靠性和效率。通过将大文件分割成多个小分片&#xff0c;不仅可以减少单次上传的数据量&#xff0c;降…...

Nginx+Lua脚本+Redis 实现自动封禁访问频率过高IP

1 、安装OpenResty 安装使用 OpenResty&#xff0c;这是一个集成了各种 Lua 模块的 Nginx 服务器&#xff0c;是一个以Nginx为核心同时包含很多第三方模块的Web应用服务器&#xff0c;使用Nginx的同时又能使用lua等模块实现复杂的控制。 &#xff08;1&#xff09;安装编译工具…...

PART 1 数据挖掘概论 — 数据挖掘方法论

目录 数据库知识发掘步骤 数据挖掘技术的产业标准 CRISP-DM SEMMA 数据库知识发掘步骤 数据库知识发掘(Knowledge Discovery in Database,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。 知识发掘流程(Knowledge Discovery Process)包括属性选择…...

Centos安装ffmpeg的方法

推荐第一个,不要自己编译安装,太难了,坑多。 在 CentOS 上安装 FFmpeg 有几种方法,以下是两种常见的方法: ### 方法一:使用 RPM Fusion 仓库安装 1. **启用 RPM Fusion 仓库**: RPM Fusion 是一个第三方仓库,提供了许多 CentOS 官方仓库中没有的软件包。 ```bash…...

理解SQL中通配符的使用

前言 SQL 是一种标准化的结构化查询语言&#xff0c;涉及结构化查询时&#xff0c;高效地检索数据至关重要。而通配符是SQL中模式匹配的有效的方法。使用通配符可以更轻松地检索到所需的确切数据。通配符允许我们定义多功能查询条件。本文将 介绍SQL通配符的基础知识及用法。 …...

SpringBoot篇(简化操作的原理)

目录 一、代码位置 二、统一版本管理&#xff08;parent&#xff09; 三、提供 starter简化 Maven 配置 四、自动配置 Spring&#xff08;引导类&#xff09; 五、嵌入式 servlet 容器 一、代码位置 二、统一版本管理&#xff08;parent&#xff09; SpringBoot项目都会继…...

Cesium的模型(ModelVS)顶点着色器浅析

来自glTF和3D Tiles的模型会走ModelVS.glsl。这个文件不单独是把模型顶点转换为屏幕坐标&#xff0c;还包含了丰富的处理过程。 Cesium是根据定义的Define判断某个行为是否需要被执行&#xff0c;比如#define HAS_SILHOUETTE&#xff0c;说明需要计算模型外轮廓线。 Cesium的…...

机器人领域中的scaling law:通过复现斯坦福机器人UMI——探讨数据规模化定律(含UMI的复现关键)

前言 在24年10.26/10.27两天&#xff0c;我司七月在线举办的七月大模型机器人线下营时&#xff0c;我们带着大家一步步复现UMI&#xff0c;比如把杯子摆到杯盘上(其中1-2位学员朋友还亲自自身成功做到该任务) 此外&#xff0c;我还特地邀请了针对UMI做了改进工作的fastumi作者…...

C++之多态的深度剖析

目录 前言 1.多态的概念 2.多态的定义及实现 2.1多态的构成条件 2.1.1重要条件 2.1.2 虚函数 2.1.3 虚函数的重写/覆盖 2.1.4 选择题 2.1.5 虚函数其他知识 协变&#xff08;了解&#xff09; 析构函数的重写 override 和 final关键字 3. 重载&#xff0c;重写&…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...