当前位置: 首页 > news >正文

【小白学机器学习26】 极大似然估计,K2检验,logit逻辑回归(对数回归)(未完成----)

目录

1 先从一个例题出来,预期值和现实值的差异怎么评价?

1.1 这样一个问题

1.2 我们的一般分析

1.3 用到的关键点1

1.4 但是差距多远,算是远呢?

2 极大似然估计

2.1 极大似然估计的目的

2.1.1 极大似然估计要解决什么问题?

2.1.2 极大似然估计的原则:

2.2 什么是极大似然估计?

2.2.1 定义

2.2.2  似然率,likehood

2.3 如何理解

2.4 如何落地?具体用什么来验证极大似然估计? K2检验

3 K2检验 (K^2检验,K^2显著度检验)

3.1 K2检验

3.2 K2值de公式

3.3 K2值de判断逻辑

3.4 具体步骤

3.5 K2值表

3.5.1 K2分布表

3.5.2 特点

3.6 K2分布的曲线

3.6.1 曲线图形

3.6.2 特点

3.7 K2检验有2个要素

3.8 K2检验的过程

3.8.1 K2值独立检验

4 对数回归

4.1 什么叫对数回归 logit regression

4.1.1 似然率,likehood

4.1.2 从概率到→发生率

4.1.3 发生率的对然对数回归

5 为什么要用对数回归?

5.1 线性回归的局限性

5.1.1 具体举个例子

5.2 什么原因引起的?

5.3 怎么解决? 

5.3.1 解决办法

5.3.2 对数回归的方法 logit regression

5.3.3 概率转化为发生率后,发生率的变化不对称

6 和机器学习的sigmoid函数(也叫逻辑函数)的关系(待完善)


1 先从一个例题出来,预期值和现实值的差异怎么评价?

1.1 这样一个问题

SPSS,还有戏说统计那本数上都有

一个关于员工其实的数据例子,其中假设有这么一些数据
整体员工里,黑人和白人的比例,60:40
经理员工里,黑人和白人的比例,4:20

那么我们简单一看,就知道这两者比例不一样,那么这两者差距够大吗?是否可以作为黑人被歧视的证据之一呢?

1.2 我们的一般分析

  • 第1:我们先有现在的这个现实数据了,但是我们不知道是否合理
  • 第2:我们假设每个人都是平等的有成为经理的可能性。
  • 先假设前提55开,也就是每个黑人和白人都是50%可能成为经理
  • 那么假设员工人数里,就是合理现状,往下推论
  1. 现实的世界:SUM=24, 经理的现状4/20
  2. 按50%推测世界:(60*0.5=30) / (20*0.5=10)=3:1 ,SUM里应该分布是18/6
  • 实际的和我们推测的数据差异很大,从而说明有问题,应然和实然差距太远

1.3 用到的关键点1

现实值,和预期值的差异,就是关键!

  1. 现实值VS预期值,对比
  2. 现实的世界 / 实然的世界:
  3. 按50%推测世界/ 应然的世界:

1.4 但是差距多远,算是远呢?

  • 这就需要用到假设检验了
  • 假设检验的方法就是,一般设定原假设,两者没差异H0。
  • 然后给定一个我们能接受的显著度比如5%,双边检验。如果我们检验出来的值对应的概率,大于5%,我们就接受原接受。
  • 如果对应的概率小于我们设定的显著度,那我们认为:在H0的假设下,现实已经发生的是小概率事件,不应该发生,从而拒绝原假设。

2 极大似然估计

2.1 极大似然估计的目的

上面引出的问题:预期值和现实值的差异怎么评价,就是极大似然估计要解决的问题

2.1.1 极大似然估计要解决什么问题?

  • 极大似然估计要解决什么问题?:是用来判断预期值和现实值之前的差距,从而去推测过去应该是什么样子!

2.1.2 极大似然估计的原则:

  • 极大似然估计的原则:现实一定是对应过去发生最大的概率的分支!
  • 如果按照H0假设,推测发现已经存在的现实,并不是最大概率(小于显著度),那么就拒绝原假设!

2.2 什么是极大似然估计?

2.2.1 定义

定义:在现实已经发生的基础上,去回溯到过去,推测过去的某个时刻,自然量和因变量是什么样的关系时,现实的发生概率最大?这个推测过程,就是极大似然估计

简单定义:

  • 过去最大概率对应的那个分支,极有可能就是现实!
  • 现实就是,过去发生的各种可能里概率最大的那种情况!

2.2.2  似然率,likehood

  • 现在的可能性—针对是未来,概率,probility
  • 过去的可能性—针对是过去,似然率,likehood

2.3 如何理解

     可以认为是一个类似坐上时光机去回溯,或者就是思想试验的东西
     这个思想试验,是一个模型,就是认为现在往回去倒推,过去自变量和因变量的关系,现实应该是其中发生概率最大的可能对应的那个事件。如果推导不是这也,那就错了。这个就是极大似然估计。

2.4 如何落地?具体用什么来验证极大似然估计? K2检验

见下面


3 K2检验 (K^2检验,K^2显著度检验)

3.1 K2检验

  • chi-square test of independence
  • K2检验和 自由度 高度相关
  • K2就是chi-square,也就是 “ chi 的平方值 ”

3.2 K2值de公式

  • K2=Σ(观察值-预期值)^2/预期值
  • K2=(O1-E1)^2/E1+(O2-E2)^2/E2+…..+ (On-En)^2/En

3.3 K2值de判断逻辑

  • 需要查表,根据当前的df+概率值的 二维交叉表,可以查到当前的K2值,在指定的df下,其发生的概率大多是多大,如果是小概率的事件,就拒绝。因为极大概率不会发生!
  • 这也就是极大似然估计的逻辑。

3.4 具体步骤

  • K2值是作为一个查表数值
  • 去一个 df*概率的二维交叉表里去差K2数值在那一列!(df决定了行,df和K2共同决定了列!)
  • 这样反查概率。
  • 用概率率来判断,如果概率很小,证明是小概率事件,发生可能性很小,拒绝H0假设!

3.5 K2值表

3.5.1 K2分布表

  • 横轴,行:自由度,DF
  • 纵轴,列:概率
  • 表中的值,K2值

3.5.2 特点

  • 自由度df越大,自由的单元格就更多,表里同样概率对应的K2值就会更大
  • 反过来说,也就是出现较大K2值的概率就越大

3.6 K2分布的曲线

3.6.1 曲线图形

  • 横轴表示K2值,x
  • 纵轴表示概率值,f(x)
  • 不同的曲线表示不同df对应的  K2-概率曲线--也就是图上的K参数

  • 看经典的K2的曲线。
  • 自由度比较小的时候,单调下降
  • 自由度比较大之后就开始接近正态分布的钟形曲线了,超过20接近正态

  • T值检验T值也和自由度有关系,但关系比较松散不用太关心。
  • 因为T检验一般检验连续变量,连续变量自由度很容易超过20,一般不考虑这个限制。
  • 但是K2分布,一定要看自由度DF
  • 一般自由度越大的K2曲线,K2的值,均值都会更大。

3.6.2 特点

可以看到变化

  • 1 前面k=1 k=2的事后,是个完全单调下降的曲线,从df=3开始就开始接近正态分布,
  • 2 自由度越大,越接近于正态分布
  • 3 在自由度比较大时,比如df大于8,大于20,都可以比较多条曲线,就是同样的K2值(平行于纵轴的竖线)与对应的不同曲线的相交点,DF越大的曲线对应的概率越大
  • 反过来说,就是比较不同的自由度,自由度越大的曲线,对应同样的K2值,其对应的纵轴的概率会越大!

3.7 K2检验有2个要素

  • 自由度
  • K2值

3.8 K2检验的过程

3.8.1 K2值独立检验

  • 先检验,算出来了确定的K2值的结果下,来判断,
  •  如果自由度小,K2一般越大,越表示发生的概率小。
  • 因而根据最大似然估计,推测 现在不可能是小概率发生,从而用K2检验拒绝了原来的假设。
  • 极大似然估计认为,现在一定是 在过去那个事件点发生的概率最大!

4 对数回归

4.1 什么叫对数回归 logit regression

  • 对数回归,即发生率的自然对数回归.
  • 是以过去的可能性/概率为因变量(/结果)的回归分析

这里面有很多子概念,下面逐个拆解

  • 过去的可能性/概率probility=似然率 likehood
  • 发生率
  • 发生率的对然对数回归
  • 为什么要用对数回归

4.1.1 似然率,likehood

  • 现在的可能性—针对是未来,概率,probility
  • 过去的可能性—针对是过去,似然率,likehood

4.1.2 从概率到→发生率

  • 我们这里不直接衡量,过去事情的发生率α,而是衡量其发生率
  • 发生率=某个事件发生的概率/此事件不发生的概率
  • α/(1-α)

4.1.3 发生率的对然对数回归

  • 发生率的对然对数回归
  • Ln(α/(1-α))
  • 这个才是对数回归中,概率的测量单位: 发生率的自然对数。


5 为什么要用对数回归?

因为线性回归经常会遇到问题

5.1 线性回归的局限性

有时候用线性回归会出现 负数系数,负数截距等,而这是逻辑上不可能的情况

  • 比如上学年数是收入的负相关系数,截距也为负等等
  • 还会出现概率超过1情况
  • 等等逻辑上很怪异的情况

5.1.1 具体举个例子

比如现实中的成绩只有 合格,不合格两档次,而且又没有具体的分数,我们需要分析人们及格的概率,需要怎么做呢?如果我们这么设计

5.2 什么原因引起的?

线性回归遇到问题的原因

  • 原因1:如果纯都是定量数据就没问题,但是一旦里面混入了定性/定类数据,就有了问题
  •            比如分析模型里有,年龄,成绩,这种定比数据,还有男女,是否经理这种定类数据都作为自变量时就有可能出现这样的情况
  • 原因2:本身变量之间的关系就很复杂,不适合用线性关系来描述
  • 原因3:其他

5.3 怎么解决? 

5.3.1 解决办法

1 对数回归是方法之一:用对数函数处理后,结果还可以用线性表示

2 其他方法

5.3.2 对数回归的方法 logit regression

  • 其实还是用的线性回归,只是用对数函数做了中转。
  • 因为必须改成曲线回归
  • 如何做曲线回归,很难
  • 而用对数,可以变换成其他直线回归

5.3.3 概率转化为发生率后,发生率的变化不对称


概率转化为发生率后,发生率的变化不对称。但是发生率的自然对数。Log of  it =p/(1-p) 却是对称的,正是利用了对数函数的这一效果。

  • 概率,转化为发生率后,发生率的变化不对称。
  • 发生率不对称,因为是比率,分母分子变化不对等
  • 0.9/0.1=9            变化大,发生率变化小
  • 0.99/0.01=99
  • 0.999/0.001=999
  • 0.9999/0.0001=9999  微量变化小,反而发生率变化很大。

  • 转化为发生率的自然对数。
  • Log of  it =ln(p/(1-p))
  • e=2.718
  • 所以用自然对数,变成稳定的-4.5~4.5之间了

6 和机器学习的sigmoid函数(也叫逻辑函数)的关系(待完善)

【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)-腾讯云开发者社区-腾讯云在KNN算法中直接可以得出预测结果,但是如果想输出预测结果,还要输出预测结果的概率,这时候就需要使用逻辑回归解决问题。icon-default.png?t=O83Ahttps://cloud.tencent.com/developer/article/2450449https://zhuanlan.zhihu.com/p/696212659icon-default.png?t=O83Ahttps://zhuanlan.zhihu.com/p/696212659

相关文章:

【小白学机器学习26】 极大似然估计,K2检验,logit逻辑回归(对数回归)(未完成----)

目录 1 先从一个例题出来,预期值和现实值的差异怎么评价? 1.1 这样一个问题 1.2 我们的一般分析 1.3 用到的关键点1 1.4 但是差距多远,算是远呢? 2 极大似然估计 2.1 极大似然估计的目的 2.1.1 极大似然估计要解决什么问题…...

【日常记录-Java】SLF4J扫描实现框架的过程

1. 简介 SLF4J(Simple Logging Facade for Java)作为一种简单的门面或抽象,服务于其他各种日志框架,例如JUL、log4j、logback等,核心作用有两项: 提供日志接口;提供获取具体日志对象的方法; 2. 扫描过程 …...

uni-app 获取 android 手机 IMEI码

1、需求来源 最近项目上需要获取手机的IMEI码,并且在更换手机号登录后,需要提示重新更新IMEI码。 2、需求拆分 2.1 获取 IMEI 码 查阅 uni-app 官网发现在android 10 已经无法获取imei码,所以对于这个需求拆分成两种情况。 第一种情况&am…...

后台管理系统的通用权限解决方案(八)认证机制介绍、JWT介绍与jjwt框架的使用

文章目录 1 认证机制介绍1.1 HTTP Basic Auth1.2 Cookie-Session Auth1.3 OAuth1.4 Token Auth 2 JWT2.1 JWT介绍2.2 JWT的数据结构2.2.1 JWT头2.2.2 JWT有效载荷2.2.3 JWT签名 3 jjwt3.1 jjwt介绍3.2 jjwt案例 1 认证机制介绍 1.1 HTTP Basic Auth HTTP Basic Auth 是一种简…...

接口测试 —— Postman 变量了解一下!

Postman变量是在Postman工具中使用的一种特殊功能,用于存储和管理动态数据。它们可以用于在请求的不同部分、环境或集合之间共享和重复使用值。 Postman变量有以下几种类型: 1、环境变量(Environment Variables): 环境变量是在…...

鸿蒙系统:核心特性、发展历程与面临的机遇与挑战

好动与不满足是进步的第一必需品 文章目录 前言重要特点和组成部分核心特性主要组件发展历程 机遇挑战总结 前言 鸿蒙系统(HarmonyOS)是由华为技术有限公司开发的一款面向全场景的分布式操作系统。它旨在为用户提供更加流畅、安全且高效的数字生活体验&…...

从0到1,用Rust轻松制作电子书

我之前简单提到过用 Rust 做电子书,今天分享下如何用Rust做电子书。制作电子书其实用途广泛,不仅可以用于技术文档(对技术人来说非常方便),也可以制作用户手册、笔记、教程等,还可以应用于文学创作。 如果…...

半天入门!锂电池剩余寿命预测(Python)

往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客 拒绝信息泄露!VMD滚动分…...

学生党头戴式耳机哪款音质更胜一筹?TOP4好音质头戴式耳机推荐

在挑选头戴式耳机时,市场上琳琅满目的品牌和型号常常让人目不暇接。究竟哪个学生党头戴式耳机哪款音质更胜一筹?这已成为许多人面临的难题。由于每个人对耳机的偏好各有侧重——一些人追求音质的纯净,一些人重视佩戴的舒适性,而另…...

数据结构 ——— 二叉树的概念及结构

目录 二叉树的概念 特殊的二叉树 一、满二叉树 二、完全二叉树 二叉树的概念 二叉树树示意图: 从以上二叉树示意图可以看出: 二叉树每个节点的度不大于 2 ,那么整个二叉树的度也不大于 2 ,但是也不是每个节点都必须有 2 个…...

【React】React 的核心设计思想

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React 的核心设计思想引言声明式编程声明式 vs 命令式示例 组件化组件的优势组件…...

C++ 二叉树进阶:相关习题解析

目录 1. 二叉树创建字符串。 2. 二叉树的分层遍历1 3. 二叉树的分层遍历2 4. 二叉树的最近公共祖先 5. 将二叉搜索树转换为排序的双向链表 6. 从前序与中序遍历序列构造二叉树 7. 从中序与后序遍历序列构造二叉树 8. 二叉树的前序遍历,非递归迭代实现 9.…...

Matlab实现蚁群算法求解旅行商优化问题(TSP)(理论+例子+程序)

一、蚁群算法 蚁群算法由意大利学者Dorigo M等根据自然界蚂蚁觅食行为提岀。蚂蚁觅食行为表示大量蚂蚁组成的群体构成一个信息正反馈机制,在同一时间内路径越短蚂蚁分泌的信息就越多,蚂蚁选择该路径的概率就更大。 蚁群算法的思想来源于自然界蚂蚁觅食&a…...

2024年10月HarmonyOS应用开发者基础认证全新题库

注意事项:切记在考试之外的设备上打开题库进行搜索,防止切屏三次考试自动结束,题目是乱序,每次考试,选项的顺序都不同 这是基础认证题库,不是高级认证题库注意看清楚标题 高级认证题库地址:20…...

kafka 分布式(不是单机)的情况下,如何保证消息的顺序消费?

大家好,我是锋哥。今天分享关于【kafka 分布式(不是单机)的情况下,如何保证消息的顺序消费?】面试题?希望对大家有帮助; kafka 分布式(不是单机)的情况下,如何保证消息的…...

数据分析案例-苹果品质数据可视化分析+建模预测

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

沈阳乐晟睿浩科技有限公司抖音小店运营创新

在当今这个数字化迅猛发展的时代,电子商务已经成为推动经济增长的重要引擎。而在电商的广阔舞台上,短视频与直播带货的崛起无疑是最为耀眼的明星之一。作为这一领域的佼佼者,抖音小店凭借其庞大的用户基础和独特的算法优势,吸引了…...

【前端】CSS知识梳理

基础:标签选择器、类选择器、id选择器和通配符选择器 font:font-style(normal) font-weight(400) font-size(16px) /line-height(0) font-family(宋体) 复合: 后代选择器( )、子选择器(>)、并集选择器(…...

【undefined reference to xxx】zookeeper库编译和安装 / sylar项目ubuntu20系统编译

最近学习sylar项目,编译项目时遇到链接库不匹配的问题,记录下自己解决问题过程,虽然过程很艰难,但还是解决了,以下内容供大家参考! undefined reference to 问题分析 项目编译报错 /usr/bin/ld: ../lib/lib…...

IDEA解决 properties 文件乱码问题

博主介绍: 计算机科班人,全栈工程师,掌握C、C#、Java、Python、Android等主流编程语言,同时也熟练掌握mysql、oracle、sqlserver等主流数据库,具有丰富的项目经验和开发技能。提供相关的学习资料、程序开发、技术解答、…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...