当前位置: 首页 > news >正文

在AdaBoost中每轮训练后,为什么错误分类的样本权重会增大e^2αt倍

在 AdaBoost 的每一轮迭代中,样本 i i i 的权重更新公式为:
w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t y i G t ( x i ) ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t y_i G_t(x_i))}{Z_t} wt+1,i=Ztwt,iexp(αtyiGt(xi))

其中:

  • w t , i w_{t,i} wt,i 是样本 i i i 在第 t t t 轮的权重。
  • α t \alpha_t αt 是该轮弱分类器的权重系数。
  • y i y_i yi 是样本 i i i 的真实标签。
  • G t ( x i ) G_t(x_i) Gt(xi) 是弱分类器 G t G_t Gt 对样本 i i i 的预测结果。
  • Z t Z_t Zt 是归一化因子,用于确保新一轮权重的总和为 1。

权重增大的推导

根据公式,我们分两种情况讨论:

  1. 当样本被正确分类时,即 G t ( x i ) = y i G_t(x_i) = y_i Gt(xi)=yi

    • 在这种情况下, y i G t ( x i ) = 1 y_i G_t(x_i) = 1 yiGt(xi)=1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i=Ztwt,iexp(αt)
  2. 当样本被错误分类时,即 G t ( x i ) ≠ y i G_t(x_i) \neq y_i Gt(xi)=yi

    • 在这种情况下, y i G t ( x i ) = − 1 y_i G_t(x_i) = -1 yiGt(xi)=1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i=Ztwt,iexp(αt)

相对增长倍数的计算

为了计算错误分类的样本权重相对于正确分类样本权重的增长倍数,我们可以比较错误分类的样本权重和正确分类的样本权重之比。

  • 错误分类的样本权重更新 w t + 1 , i 错误 = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i}^{\text{错误}} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i错误=Ztwt,iexp(αt)
  • 正确分类的样本权重更新 w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i}^{\text{正确}} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i正确=Ztwt,iexp(αt)

计算它们的比值,即:

w t + 1 , i 错误 w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( α t ) Z t w t , i ⋅ exp ⁡ ( − α t ) Z t = exp ⁡ ( 2 α t ) \frac{w_{t+1,i}^{\text{错误}}}{w_{t+1,i}^{\text{正确}}} = \frac{\frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t}}{\frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t}} = \exp(2\alpha_t) wt+1,i正确wt+1,i错误=Ztwt,iexp(αt)Ztwt,iexp(αt)=exp(2αt)

结论

因此,相对于正确分类的样本,错误分类的样本权重确实增大了 e 2 α t e^{2\alpha_t} e2αt。这个比值反映了AdaBoost通过增加权重让后续的弱分类器更多关注错误分类样本的机制。

相关文章:

在AdaBoost中每轮训练后,为什么错误分类的样本权重会增大e^2αt倍

在 AdaBoost 的每一轮迭代中,样本 i i i 的权重更新公式为: w t 1 , i w t , i ⋅ exp ⁡ ( − α t y i G t ( x i ) ) Z t w_{t1,i} \frac{w_{t,i} \cdot \exp(-\alpha_t y_i G_t(x_i))}{Z_t} wt1,i​Zt​wt,i​⋅exp(−αt​yi​Gt​(xi​))​ …...

什么是数据中心?

数据中心是一个专门用于容纳大量联网计算机设备的设施,这些设备共同协作,以处理、存储和传输数据。现代社会中,大部分高科技公司都依赖数据中心来提供在线服务,例如网站、应用程序和云服务等。可以说,数据中心是互联网…...

【工具使用】VSCode如何将本地项目关联到远程的仓库 (vscode本地新项目与远程仓库建立链接)

在日常练习的项目中,我每次都在vscdoe编写前台代码,但是对于编写的代码,如何将本地项目关联到远程的仓库;这里做一下记录 文章目录 1、Gitee 新建远程仓库2、将本地的项目和远程仓库进行关联**3、将本地修改的代码推送到远程通过命…...

安全见闻-二进制与网络安全的关系

一、二进制的基本概念 二、二进制在网络安全中的重要性 三、二进制安全的概念与范畴 1. 二进制安全的定义 2. 范畴 四、二进制安全的渗透测试方法 1. 静态分析 2. 动态分析 3. 模糊测试 4. 漏洞利用 5. 代码审计 五、结论 学习视频泷羽sec:安全见闻&…...

MongoDB 部署指南:从 Linux 到 Docker 的全面讲解

一、MongoDB 简介 MongoDB 是一种 NoSQL 数据库,以文档模型存储数据,具备高性能、弹性扩展性和分布式架构等特点,非常适用于高并发和大数据量的场景。本文将从 Linux 和 Docker 环境开始讲解,帮助读者在不同环境下顺利部署 Mongo…...

Java AQS 源码

前言 相关系列 《Java & AQS & 目录》(持续更新)《Java & AQS & 源码》(学习过程/多有漏误/仅作参考/不再更新)《Java & AQS & 总结》(学习总结/最新最准/持续更新)《Java & …...

栈和队列(1)——栈

栈的基本概念 1. 栈的定义:只允许在一端进行插入或删除操作的线性表(可以理解为操作受限的线性表)。 2. 栈的特点:后进先出(LIFO)。 3. 栈的基本操作:初始化、销毁、进栈、出栈、读栈顶元素等…...

Java中的反射(Reflection)

先上两张图来系统的看一下反射的作用和具体的实现方法 接下来详细说一下反射的步骤以及之中使用的方法: 获取Class对象: 要使用反射,首先需要获得一个Class对象,该对象是反射的入口点。可以通过以下几种方式获取Class对象&#x…...

【IC验证】linux系统下基于QuestaSim的systemverilog仿真TCL命令

linux系统下基于QuestaSim的systemverilog仿真TCL命令 一.终端打开QuestaSim二.QuestaSim中TCL脚本指令1.仿真库的创建(vlib)-非必要2.编译命令(vlog)3.仿真命令(vlog)4.运行命令(run&#xff0…...

Python图像处理库PIL,实现旋转缩放、剪切拼接以及滤波

文章目录 切割缩放和旋转拼接 PIL的Image类,提供了一些常用的图像处理方法。 切割缩放和旋转 PIL可以很方便地实现如下效果 代码如下 from PIL import Image path lena.jpg img Image.open(path) # 读取 img.resize((50, 50), resampleImage.Resampling.NEARE…...

xhr的readyState和status

XMLHttpRequest(XHR)对象中的readyState和status用于监控异步 HTTP 请求的状态。它们分别表示请求的当前阶段和服务器的响应状态。 readyState 用于判断请求所处的阶段,确保数据完全接收。 status 用于判断请求的结果状态(如200表…...

Rust 力扣 - 238. 除自身以外数组的乘积

文章目录 题目描述题解思路题解代码题解链接 题目描述 题解思路 这题主要有个关键点,就是元素能取0,然后我们分类讨论元素为0的数量 如果数组中存在至少两个元素为0,则每个元素的除自身以外的乘积为0如果数组中仅存在一个0,则为…...

【Vue框架】基础语法练习(1)

其实更多知识点已经在Vue.js官网十分清楚了,大家也可以去官网进行更细节的学习 https://cn.vuejs.org/ 说明:目前最新是Vue3版本的,但是Vue2已经深得人心,所以就是可以支持二者合用。它们最大的区别就是Vue3是组合式API&#xf…...

开源一款基于 JAVA 的仓库管理系统,支持三方物流和厂内物流,包含 PDA 和 WEB 端的源码

大家好,我是一颗甜苞谷,今天分享一款基于 JAVA 的仓库管理系统,支持三方物流和厂内物流,包含 PDA 和 WEB 端的源码。 前言 在当前的物流仓储行业,企业面临着信息化升级的迫切需求,但往往受限于高昂的软件采购和维护成本。现有的…...

开源一套基于若依的wms仓库管理系统,支持lodop和网页打印入库单、出库单的源码

大家好,我是一颗甜苞谷,今天分享一款基于若依的wms仓库管理系统,支持lodop和网页打印入库单、出库单的源码。 前言 在当今快速发展的商业环境中,库存管理对于企业来说至关重要。然而,许多企业仍然依赖于传统的、手动…...

HTML+JavaScript案例分享: 打造经典俄罗斯方块,详解实现全过程

在本文中,我们将深入探讨如何使用 JavaScript 实现经典的俄罗斯方块游戏。俄罗斯方块是一款广为人知的益智游戏,通过操纵各种形状的方块,使其在游戏区域内排列整齐,以消除完整的行来获得分数。 效果图如下: 一、游戏界面与布局 我们首先使用 HTML 和 CSS 来创建游戏的界面…...

【网页布局技术】项目五 使用CSS设置导航栏

《CSSDIV网页样式与布局案例教程》 徐琴 目录 任务一 制作简单纵向导航栏支撑知识点1.合理利用display:block属性2.利用margin-bottom设置间隔效果3.利用border设置特殊边框 任务二 制作简单横向导航栏任务三 制作带图片效果的横向导航栏任务…...

自学网络安全,网络安全入门学习路线,收藏这篇就够了

在当今高度数字化的时代,网络安全已经成为了一个至关重要的领域。随着网络威胁的不断演变和增长,对于专业网络安全人才的需求也在急剧上升。对于那些对网络安全充满热情并且渴望自学成才的人来说,制定一个系统、全面且高效的学习路线和规划是…...

React Query已过时?新一代请求工具横空出世

大家好!今天我想和你们聊聊一个让我兴奋不已的话题 —— 分页列表请求策略。你们知道吗?这个策略真的帮了我大忙!它不仅让我的代码更简洁,还大大提升了用户体验。说实话,每次用到这个功能,我都忍不住赞叹。…...

视频怎么进行格式转换?6款视频转换MP4格式的免费软件!

在数字时代,视频格式的多样性为我们提供了丰富的观看和编辑选择,但同时也带来了格式不兼容的困扰:MOV、AVI、WMV、MKV……这些格式多多少少都会遇到因不兼容而无法播放或下载分享的场景。当你想要将视频文件从一种格式转换为另一种格式&#…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...