Java集合常见面试题总结(5)
HashSet 如何检查重复?
当你把对象加入HashSet
时,HashSet
会先计算对象的hashcode
值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode
值作比较,如果没有相符的 hashcode
,HashSet
会假设对象没有重复出现。但是如果发现有相同 hashcode
值的对象,这时会调用equals()
方法来检查 hashcode
相等的对象是否真的相同。如果两者相同,HashSet
就不会让加入操作成功。
在 JDK1.8 中,HashSet
的add()
方法只是简单的调用了HashMap
的put()
方法,并且判断了一下返回值以确保是否有重复元素。直接看一下HashSet
中的源码:
// Returns: true if this set did not already contain the specified element
// 返回值:当 set 中没有包含 add 的元素时返回真
public boolean add(E e) {return map.put(e, PRESENT)==null;
}
而在HashMap
的putVal()
方法中也能看到如下说明:
// Returns : previous value, or null if none
// 返回值:如果插入位置没有元素返回null,否则返回上一个元素
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
...
}
也就是说,在 JDK1.8 中,实际上无论HashSet
中是否已经存在了某元素,HashSet
都会直接插入,只是会在add()
方法的返回值处告诉我们插入前是否存在相同元素。
HashMap 的底层实现
JDK1.8 之前
JDK1.8 之前 HashMap
底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashcode
经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash
判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
HashMap
中的扰动函数(hash
方法)是用来优化哈希值的分布。通过对原始的 hashCode()
进行额外处理,扰动函数可以减小由于糟糕的 hashCode()
实现导致的碰撞,从而提高数据的分布均匀性。
JDK 1.8 HashMap 的 hash 方法源码:
JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。
static final int hash(Object key) {int h;// key.hashCode():返回散列值也就是hashcode// ^:按位异或// >>>:无符号右移,忽略符号位,空位都以0补齐return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
对比一下 JDK1.7 的 HashMap 的 hash 方法源码.
static int hash(int h) {// This function ensures that hashCodes that differ only by// constant multiples at each bit position have a bounded// number of collisions (approximately 8 at default load factor).h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
}
相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
JDK1.8 之后
相比于之前的版本, JDK1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。
TreeMap、TreeSet 以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
我们来结合源码分析一下 HashMap
链表到红黑树的转换。
1、 putVal
方法中执行链表转红黑树的判断逻辑。
链表的长度大于 8 的时候,就执行 treeifyBin
(转换红黑树)的逻辑。
// 遍历链表
for (int binCount = 0; ; ++binCount) {// 遍历到链表最后一个节点if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);// 如果链表元素个数大于TREEIFY_THRESHOLD(8)if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st// 红黑树转换(并不会直接转换成红黑树)treeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;
}
2、treeifyBin
方法中判断是否真的转换为红黑树。
final void treeifyBin(Node<K,V>[] tab, int hash) {int n, index; Node<K,V> e;// 判断当前数组的长度是否小于 64if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)// 如果当前数组的长度小于 64,那么会选择先进行数组扩容resize();else if ((e = tab[index = (n - 1) & hash]) != null) {// 否则才将列表转换为红黑树TreeNode<K,V> hd = null, tl = null;do {TreeNode<K,V> p = replacementTreeNode(e, null);if (tl == null)hd = p;else {p.prev = tl;tl.next = p;}tl = p;} while ((e = e.next) != null);if ((tab[index] = hd) != null)hd.treeify(tab);}
}
将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树。
相关文章:

Java集合常见面试题总结(5)
HashSet 如何检查重复? 当你把对象加入HashSet时,HashSet 会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode 值作比较,如果没有相符的 hashcode,HashSet 会假设对象没有重复出现。但是如果发…...

牛客网刷题(3)(Java的几种常用包)
目录 一、牛客网案例题目。 二、Java常用包的总结。 <1>JAVA常用包(图片)。 <2>java.lang包。 <3>java.util包。 (1)集合框架。 1、Collection接口。 2、List接口。 3、Set接口。 4、Queue接口。 5、Map接口。 …...

PyTorch nn.Conv2d 空洞卷积
torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔 dilation controls the spacing between the kernel points 当 dilation1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积当 dilation>1 时, 表示空洞卷积(dilated convolution) 动画演示: 手动计算 以 2*2 的卷…...

像素、分辨率、PPI(像素密度)、帧率的概念
文章目录 前言一、像素1、定义2、像素点也不是越多越好 二、分辨率1、定义 三、PPI(像素密度)1、定义2、计算公式3、视网膜屏幕 四、帧率1、帧 (Frame)2、帧数 (Frames)3、帧率 (Frame Rate)4、FPS (Frames Per Second)5、赫兹 五、其他1、英寸2、为何显示器尺寸以英寸命名 总结…...
两步GMM计算权重矩阵
在广义矩方法(GMM)中,权重矩阵(W)的选择是关键的一步。理想情况下,(W)应该等于矩条件的协方差矩阵的逆矩阵。这是因为使用这样的权重矩阵可以使得估计量达到最小方差,从而提高估计效率。 两步GMM计算权重矩阵(W) 第一…...

leetcode452. 用最少数量的箭引爆气球
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一…...

【Android】使用TextView实现按钮开关代替Switch开关
介绍 Android 本身自己带的有开关控件,但是很多时候我们是不愿意使用这种开关的,感觉使用起来比较麻烦,特别是遇到需要延迟操作的情况。 比如有一个需求是这样的:我们需要打开一个设置,但是这个设置是否打开需要经过…...

(49)MATLAB实现迫零均衡器原理与代码
文章目录 前言一、迫零均衡器设计说明二、迫零均衡器MATLAB源代码1.函数说明2.代码实现3.辅助函数 前言 使用MATLAB实现迫零均衡器。给出完整的MATLAB设计源代码。 一、迫零均衡器设计说明 理想的迫零均衡器有无限多个抽头权系数,是不能实现的,本文考虑…...

滚柱导轨出现异常损坏的原因
滚柱导轨是一种精密的直线滚动导轨,具有较高的承载能力和较高的刚性,对反复动作、起动、停止往复运动频率较高情况下可减少整机重量和传动机构及动力成本。滚柱导轨可获得较高的灵敏度和高性能的平面直线运动,在重载或变载的情况下࿰…...
架构师考试系列(6)论文专题:论分布式架构设计
论分布式架构设计 摘要: 2020年2月,我司中标了某省电力公司的配网运维管控项目,该项目接入电力公司营销、设备和调度等多个部门的专业数据,为配网运行、配网检修、配网抢修、配网工程、供电服务等核心业务提供数据支撑。由于本项目是省级项目,系统可靠性、可用性要求比较…...
leetcode hot100【LeetCode 230. 二叉搜索树中第K小的元素】java实现
LeetCode 230. 二叉搜索树中第K小的元素 题目描述 给定一个二叉搜索树的根节点 root,和一个整数 k,请你找出其中第 k 小的节点。 注意: 题目保证 k 的有效性。 示例: 给定二叉搜索树: 5/ \3 7/ \ \ 2 4 …...

从0开始深度学习(23)——图像卷积
上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用 1 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。 首先,我们暂时忽略通…...
编程小白如何成为大神
成为编程大神的过程需要时间、耐心和实践。以下是一些适合大学新生的入门攻略: 1. 确定学习目标 选择语言:选择一门编程语言作为起点,如 Python、Java 或 JavaScript。Python 是初学者的热门选择,因为其语法简洁易懂。设定目标&…...

JetCache启动循环依赖分析
问题呈现 项目性能优化,需要将本地内存(JVM内存)替换为本地Redis(同一个Pod中的Container),降低JVM内存和GC的压力,同时引入了JetCache简化和统一使用(对JetCache也做了扩展&#x…...

【科研绘图】3DMAX管状图表生成插件TubeChart使用方法
3DMAX管状图表生成插件TubeChart,一款用于制作3D管状图表的工具。可以自定义切片的数量以及随机或指定切片颜色。 【版本要求】 3dMax 2008及更高版本 【安装方法】 TubeChart插件无需安装,使用时直接拖动插件脚本文件到3dMax视口中打开即可࿰…...

基于SSM土家风景文化管理系统的设计
管理员账户功能包括:系统首页,个人中心,用户管理,景点分类管理,热门景点管理,门票订单管理,旅游线路管理,系统管理 前提账号功能包括:系统首页,个人中心&…...
C++超强图片预览器
下载 文件打开关联 关键代码 uint32_t getSrcPx3(const cv::Mat& srcImg, int srcX, int srcY, int mainX, int mainY) const {cv::Vec3b srcPx = srcImg.at<cv::Vec3b>(srcY, srcX);intUnion ret = 255;if (curPar.zoomCur < curPar.ZOOM_BASE && src…...

网络搜索引擎Shodan(2)
声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 声明:本文主要用作技术分享,所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险,并遵循相关法律法规。 感谢泷…...
【Tableau】
Tableau 是一款强大且广泛使用的数据可视化和商业智能(BI)工具,用于帮助用户分析、探索和呈现数据。它通过直观的拖放界面,允许用户轻松创建动态仪表板和报告,而无需编写代码。Tableau 可处理多种数据源,如…...

分类与有序回归
分类问题 分类问题,例如分类猫、狗、猪时,使用数字进行表示为1,2,3。而1、2、3之间有大小,分类算法为了平衡标签之间的差异,使得损失公平,会使用one-hot编码。例如,分别使用&#x…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...