ETL处理全流程
ETL代表提取Extraction、转换Transform、加载Load——这个过程涉及从各种来源提取数据,将其转换为一致的格式,并将其加载到目标数据库或数据仓库中。这是数据集成和分析的一个重要步骤,因为它确保数据准确、可靠,并准备好进一步处理。
今天我们就来详细说下ETL整个操作流程:
Extraction-数据抽取
一、从数据库中提取数据
- 使用 SQL 查询
对于像 MySQL、Oracle 和 SQL Server 这类数据库,ETL 工具通常会利用 SQL(结构化查询语言)来提取数据。
例如,通过编写简单的 SELECT 语句,可以从一个或多个表中获取所需的数据。
- 数据库连接驱动
ETL 工具通过特定的数据库连接驱动来与数据库进行通信。这些驱动是软件组件,能够理解数据库的协议并将 ETL 工具的请求转换为数据库能够理解的操作。例如,Java - based 的 ETL 工具可能会使用 JDBC(Java Database Connectivity)驱动来连接数据库。当配置 ETL 工具时,需要指定数据库的连接信息,如主机名、端口号、数据库名称、用户名和密码等。驱动会根据这些信息建立与数据库的连接,然后执行提取数据的操作。
二、从 API 中提取数据
- HTTP 请求
当把 API 作为数据源时,ETL 工具会通过发送 HTTP(超文本传输协议)请求来获取数据。对于 RESTful API,ETL 工具发送 GET 请求来检索数据。
例如,要从一个提供天气数据的 API 获取某个城市的天气信息,ETL 工具可能会发送如下的 GET 请求,这个请求的 URL 指向了 API 的端点,其中包含了查询参数(如城市名称和数据类型)。ETL 工具会根据 API 的文档构建正确的请求 URL,然后发送请求。API 会返回数据,通常是 JSON 或 XML 格式,ETL 工具再对返回的数据进行解析。
2.认证和授权
许多 API 需要进行认证和授权才能访问数据。ETL 工具需要处理这些认证机制。
常见的认证方式包括 API 密钥、OAuth(开放授权)等。如果是 API 密钥认证,ETL 工具需要在请求头或请求参数中包含正确的密钥。
例如,对于一个使用 API 密钥的地图数据 API,ETL 工具可能会在请求头中添加类似 “Authorization: Bearer YOUR_API_KEY” 的信息,以证明自己有权访问数据。
3.处理 API 响应
API 返回的数据格式可能是多样化的,如 JSON 或 XML。ETL 工具需要有相应的解析功能来处理这些格式。对于 JSON 数据,ETL 工具会将返回的字符串解析为一个数据结构(如字典或列表),然后可以提取其中的具体数据。例如,如果 API 返回的 JSON 数据如下:{ “city”: “Syndey”, “weather”: “Sunny”, “temperature”: “70” }
ETL 工具通过解析这个 JSON 数据,提取 “city”、“weather” 和 “temperature” 等字段的值,用于后续的转换和加载操作。
三、从文件中提取数据
1.文本文件(CSV、JSON、XML 等)
· CSV 文件,ETL 工具通常会逐行读取文件内容。以 Python 语言为例,使用内置的 csv 模块可以很方便地读取 CSV 文件。
· JSON 文件,ETL 工具会使用 JSON 解析库来读取文件内容。在 Python 中,可以使用 json 模块进行解析。
· XML 文件,ETL 工具会利用 XML 解析器。在 Java 中,可以使用 JAXP(Java API for XML Processing)等相关库来解析 XML 文件,通过遍历 XML 节点来提取数据。
Transform-数据转换
在ETL过程中转换和清理数据的详细说明:
数据转换和清理是ETL(提取、转换、加载)过程中的关键步骤。
- 数据映射-Mapping
1)数据映射是定义源数据和目标数据之间关系的过程。它涉及识别源数据中与目标数据中的字段对应的字段。此步骤对于确保转换后的数据与所需的输出格式一致至关重要。
2)在数据映射过程中,考虑字段名称、数据类型以及任何所需的转换或计算等因素很重要。通过仔细映射源字段和目标字段,可以确保转换后的数据准确代表原始信息。
- 过滤-Filtering
1)过滤是一种用于从数据集中删除不需要的或无关的数据的技术。在ETL过程中,可以在各个阶段应用过滤,以消除不必要的信息。这有助于提高性能并减少存储需求。
2)应用过滤时,根据具体要求定义明确的标准很重要。例如,可能想要过滤掉不符合特定条件的记录或排除重复条目。通过应用适当的过滤,可以简化数据集,并专注于相关信息以进行进一步分析。
- 数据类型转换-Data type conversion
1)数据类型转换涉及将字段的格式从一种数据类型更改为另一种数据类型。在以不同格式集成不同的数据集或为特定应用程序或系统准备数据时,此步骤是必要的。
2)在数据类型转换过程中,需要确保源系统和目标系统之间的兼容性。例如,如果源系统将日期存储为字符串,目标系统要求它们以日期格式,需要相应地转换格式。同样,将数值从一种格式(例如字符串)转换为另一种格式(例如整数)可以确保后续过程中的一致性和准确性。
3)要执行数据类型转换,可以使用ETL工具提供的内置函数或库。这些工具通常提供广泛的转换选项,允许无缝处理各种数据类型。
- 数据清理-Data cleansing
数据清理涉及识别和纠正或删除数据集中的错误、不一致和不准确之处。这一步对于确保数据质量和可靠性至关重要。
常见的数据清理技术包括:
1)删除重复记录:重复的条目可能会扭曲分析结果,并导致错误的结论。通过识别和消除重复项,您可以确保准确的见解。
2)处理缺失值:由于各种原因,如数据输入不完整或系统错误,可能会出现缺失值。重要的是,通过将缺失值归因于估计值或将它们排除在分析之外,来适当地解决缺失值。
3)标准化数据格式:数据集中不一致的格式可能会在分析过程中造成问题。对日期、地址或名称等字段的格式进行标准化,确保一致性并提高数据质量。
4)更正不一致的值:在某些情况下,数据可能包含需要更正的不一致值。例如,如果字段以不同的货币(例如美元和欧元)存储货币值,则有必要将它们转换为单一货币以进行准确分析。
通过应用这些清洁技术,可以提高数据的准确性和可靠性,从而获得更有意义的见解和明智的决策。
Load-加载数据
在完成抽取、转换后,进入到数据加载过程:
- 目标系统准备
- 确定目标存储系统:
在加载数据之前,首先要明确数据的接收方。这可能是一个关系型数据库(如MySQL、Oracle、SQLServer等)、非关系型数据库(如MongoDB、Cassandra等)、数据仓库(如Snowflake、Redshift等),或者是简单的文件系统(如CSV、JSON文件存储)。不同的目标存储系统有不同的结构和要求。
- 创建目标表或文件结构:
如果数据是加载到数据库或数据仓库中,需要根据数据的内容和格式创建相应的表结构。这包括定义表名、列名、数据类型、主键、外键等约束条件。
- 配置目标系统连接:
ETL工具需要建立与目标存储系统的连接。对于数据库,这涉及提供目标数据库的主机名、端口号、数据库名称、用户名和密码等信息。ETL工具会使用相应的数据库驱动(如JDBC驱动)来建立连接。如果是文件系统,需要确保ETL工具对存储文件的目录有写入权限。
- 数据加载策略选择
- 全量加载:
这种策略适用于初次将数据从源系统加载到目标系统,或者当源数据发生重大变更(如系统升级、数据结构调整)需要重新加载全部数据的情况。例如,在构建一个新的数据仓库时,需要将业务系统中的所有历史订单数据全量加载到数据仓库的订单事实表中。
· 全量加载的优点是数据的完整性和一致性容易保证,因为所有数据都被重新加载,不存在数据遗漏或不一致的问题。但缺点是当数据量很大时,加载过程可能会比较耗时,并且会对源系统和目标系统的资源(如存储、网络、CPU等)造成较大的压力。
- 增量加载:
增量加载是指只将源系统中自上次加载后新增或修改的数据加载到目标系统中。这需要在源系统或ETL工具中设置某种标识来确定哪些数据是新的数据。常见的方法包括使用时间戳(如数据库表中的“last_updated”字段记录数据的最后更新时间)、版本号(每次数据更新时版本号加1)或日志文件(记录数据的更改操作)。
- 批量加载与逐行加载:
· 批量加载是指将一批数据(如数千行或更多)一次性地加载到目标系统中。这种方式可以减少与目标系统的交互次数,提高加载效率。许多数据库都提供了专门的批量加载工具或命令,如SQL Loader(用于Oracle)、BCP(用于SQL Server)等。在ETL工具中,可以利用这些功能将抽取和转换后的一批数据批量加载到目标数据库。
· 逐行加载则是每次将一条数据行加载到目标系统中。这种方式相对简单,但效率较低,通常适用于数据量较小或者需要实时加载单个数据记录的情况。
- 数据加载执行
- 数据库加载方式:
INSERT语句:如果是逐行加载到数据库,最常见的方式是使用SQL的INSERT语句。例如,对于已经抽取和转换好的一条客户订单数据,ETL工具可以执行INSERT语句将其加载到目标表中。
- 存储过程调用:
有些复杂的数据库加载逻辑可以封装在存储过程中。ETL工具可以调用存储过程来实现数据加载。存储过程可以包含事务控制(如开始事务、提交事务、回滚事务),以确保数据加载的完整性。
- 批量插入:
当采用批量加载策略时,可以使用数据库支持的批量插入方法。以MySQL为例,可以使用“INSERT INTO… VALUES (…), (…),…”的形式一次性插入多条数据。ETL工具会将抽取和转换后的一批数据按照这种格式组织起来,然后执行批量插入操作
- 文件系统加载方式:
· 写入新文件:如果目标是创建一个新的文件,ETL工具会根据文件格式(如CSV、JSON等)将数据逐行或批量写入文件。对于CSV文件,需要按照CSV的格式规则(如使用逗号分隔列,引号包裹含有特殊字符的列等)来写入数据。
· 追加到现有文件:如果是将数据追加到已有的文件中,ETL工具会打开文件并将数据添加到文件末尾。同样以CSV文件为例,在Python中可以使用“a”模式(追加模式)打开文件并写入数据。
- 数据加载后的验证和处理
- 数据完整性验证:
加载完成后,需要验证数据是否完整地加载到了目标系统中。这可以通过检查加载的行数与预期的行数是否一致来实现。例如,在将一个包含1000条记录的数据集加载到数据库表后,可以通过查询目标表的行数来验证是否全部加载成功。
- 数据质量检查:
除了完整性验证,还需要检查加载后的数据质量。这包括检查数据的准确性(如数据的值是否符合预期的范围和规则)、一致性(如关联数据之间是否匹配)等。
- 错误处理和日志记录:
在数据加载过程中,可能会出现各种错误,如目标系统存储空间不足、数据类型不匹配、违反主键约束等。ETL工具需要能够捕获这些错误,并进行适当的处理。通常会将错误信息记录到日志文件中,以便后续查看和分析。对于一些可以自动修复的错误(如数据类型转换问题),ETL工具可以尝试自动修复;对于无法自动修复的错误,可能需要人工干预,或者根据错误的严重程度决定是否继续加载其他数据。
FineDataLink 是一款低代码/高时效的ETL数据集成平台,面向用户大数据场景下,满足实时和离线数据采集、集成、管理的诉求,提供快速连接、高时效融合各种数据、灵活进行ETL数据开发的能力,帮助企业打破数据孤岛,大幅激活企业业务潜能,使数据成为生产力。
相关文章:

ETL处理全流程
ETL代表提取Extraction、转换Transform、加载Load——这个过程涉及从各种来源提取数据,将其转换为一致的格式,并将其加载到目标数据库或数据仓库中。这是数据集成和分析的一个重要步骤,因为它确保数据准确、可靠,并准备好进一步处…...

美畅物联丨掌握Wireshark:GB28181协议报文分析实战指南
Wireshark,一款在网络安全与协议分析领域享有盛誉的网络嗅探器,凭借其强大的功能集、直观的图形用户界面以及广泛的跨平台兼容性,已成为众多开发者不可或缺的得力助手。其开源特性吸引了大量开发者的积极参与,不断推动其功能的完善…...

【python】OpenCV—WaterShed Algorithm
文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、更多例子7、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割…...

CSS flex布局- 最后一个元素占满剩余可用高度转载
效果图 技术要点 height父元素必须有一个设定的高度flex-grow: 1 flex 盒子模型内的该元素将会占据父容器中剩余的空间F12检查最后一行的元素,高度就已经改变了;...

Camp4-L1:XTuner 微调个人小助手认知
书生浦语大模型实战营第四期-XTuner 微调个人小助手认知 教程链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/README.md任务链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/task.md提交链接:…...

Qt:语言家视图
1.一不小心将qt语言家点成这样 2.点击查看->视图 3.效果...

【Paper Note】利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位
利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位 摘要核心模块什么是边界?什么是边界特征? 写作背景解决的问题 方法1. 特征提取使用预训练好的自监督学习模型进行前端特征提取Attentive poolingQ:为什么使用Attentive …...

海外共享奶牛牧场投资源码-理财金融源码-基金源码-共享经济源码
新版海外共享奶牛牧场投资源码/理财金融源码/基金源码/共享经济源码...

iOS静态库(.a)及资源文件的生成与使用详解(OC版本)
引言 iOS静态库(.a)及资源文件的生成与使用详解(Swift版本)_xcode 合并 .a文件-CSDN博客 在前面的博客中我们已经介绍了关于iOS静态库的生成步骤以及关于资源文件的处理,在本篇博客中我们将会以Objective-C为基础语言…...

Python自动化:关键词密度分析与搜索引擎优化
在数字营销领域,搜索引擎优化(SEO)是提升网站可见性和吸引有机流量的关键。关键词密度分析作为SEO的一个重要组成部分,可以帮助我们理解特定关键词在网页内容中的分布情况,从而优化网页内容以提高搜索引擎排名。本文将…...

苏州金龙新V系客车创新引领旅游出行未来
10月25日,为期三天的“2024第六届旅游出行大会”在风景秀丽的云南省丽江市落下帷幕。本次大会由中国旅游车船协会主办,全面展示了中国旅游出行行业最新发展动态和发展成就,为旅游行业带来全新发展动力。 在大会期间,备受瞩目的展车…...

linux:DNS服务
DNS简介: DNS系统使用的是网络的查询,那么自然需要有监听的port。DNS使用的是53端口, 在/etc/services(搜索domain)这个文件中能看到。通常DNS是以UDP这个较快速的数据传输协议来查 询的,但是没有查询到完…...

传奇架设好后创建不了行会,开区时点创建行会没反应的解决办法
传奇架设好后,测试了版本,发现行会创建不了,按道理说一般的版本在创建行会这里不会出错的,因为这是引擎自带的功能。 建立不了行会虽然说问题不大,但也不小,会严重影响玩家的游戏体验,玩游戏为的…...

【小白学机器学习28】 统计学脉络+ 总体+ 随机抽样方法
目录 参考书,学习书 0 统计学知识大致脉络 1 个体---抽样---整体 1.1 关于个体---抽样---整体,这个三段式关系 1.2 要明白,自然界的整体/母体是不可能被全部认识的 1.2.1 不要较真,如果是人为定义的一个整体,是可…...

安全研究 | 不同编程语言中 IP 地址分类的不一致性
作为一名安全研究人员,我分析了不同编程语言中 IP 地址分类 的行为。最近,我注意到一些有趣的不一致性,特别是在循环地址和私有 IP 地址的处理上。在这篇文章中,我将分享我对此问题的观察和见解。 设置 我检查了多种编程语言&am…...

小小的表盘还能玩出这么多花样?华为手表这次细节真的拉满
没想到小小的表盘还能玩出这么多花样?华为这次细节真的拉满!还有没有你不知道的神奇玩法? 情绪萌宠,心情状态抬腕可见 好心情就像生活馈赠的糖果,好的心情让我们遇到困难也不惧打击!HUAWEI WATCH GT 5情绪…...

trueNas 24.10 docker配置文件daemon.json无法修改(重启被覆盖)解决方案
前言 最近听说truenas的24.10版本开放docker容器解决方案放弃了原来难用的k3s,感觉非常巴适,就研究了一下,首先遇到无法迁移老系统应用问题比较好解决,使用sudo登录ssh临时修改daemon.json重启docker后进行docker start 容器即可…...

数字孪生,概念、应用与未来展望
随着科技的飞速发展,数字化已经成为各行各业的发展趋势,在这个过程中,数字孪生作为一种新兴的技术,逐渐引起了人们的关注,本文将对数字孪生的概念、应用以及未来展望进行详细介绍。 数字孪生的概念: 数字孪…...

Chromium HTML Input 类型Text 对应c++
一、文本域(Text Fields) 文本域通过 <input type"text"> 标签来设定,当用户要在表单中键入字母、数字等内容时,就会用到文本域。 <!DOCTYPE html> <html> <head> <meta charset"ut…...

SpringMvc参数传递
首先对于post请求汉字乱码需要进行过滤器配置 普通参数传递 直接传递 客户端传递的属性名与我的bean中的函数参数名相同 映射传递RequestParam("XXX") 在我们方法参数中定义一个与客户端属性名一致 并绑定参数 POJO实体类传递 嵌套POJO传递 数组likes参数传递…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...