Java避坑案例 - 线程池错误的混用引发的性能故障分析
文章目录
- 问题现象
- 问题分析
- 问题修复
- 线程池的混用策略
- 任务类型与线程池配置
- 最佳实践
问题现象
代码使用了线程池异步处理一些内存中的数据,但通过监控发现处理得非常慢,整个处理过程都是内存中的计算不涉及 IO 操作,也需要数秒的处理时间,应用程序 CPU 占用也不是特别高,有点不可思议
问题分析
经排查发现,业务代码使用的线程池,除了自身业务使用,同时还被一个后台的文件批处理任务用到了。
private static ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 2,1, TimeUnit.HOURS,new ArrayBlockingQueue<>(100),new ThreadFactoryBuilder().setNameFormat("batchfileprocess-threadpool-%d").build(),new ThreadPoolExecutor.CallerRunsPolicy());public int handleFile() throws ExecutionException, InterruptedException {return threadPool.submit(calcTask()).get();}
接下来我们模拟一下文件批处理的代码,在程序启动后通过一个线程开启死循环逻辑,不断向线程池提交任务,任务的逻辑是向一个文件中写入大量的数据
/*** 在Bean初始化完成后执行的方法* 此方法初始化线程池并启动一个新线程来执行特定任务*/
@PostConstruct
public void init() {// 打印线程池的初始状态和统计信息printStats(threadPool);// 创建并启动一个新的线程来执行批处理任务new Thread(() -> {// 生成一个由'a'字符组成的100万字符长的字符串作为负载String payload = IntStream.rangeClosed(1, 1_000_000).mapToObj(__ -> "a").collect(Collectors.joining(""));// 无限循环执行任务while (true) {// 使用线程池执行写入操作threadPool.execute(() -> {try {// 写入当前时间戳和负载到文件中Files.write(Paths.get("artisan.txt"), Collections.singletonList(LocalTime.now().toString() + ":" + payload), UTF_8, CREATE, TRUNCATE_EXISTING);} catch (IOException e) {// 打印异常信息e.printStackTrace();}// 记录日志,表示批处理任务完成log.info("batch file processing done");});}}).start();
}/*** 定期打印线程池的运行统计信息* 此方法内部创建了一个新的单线程调度器,用于定期执行打印线程池统计信息的任务* 它提供了线程池大小、活动线程数、已完成任务数和队列中任务数的信息* 这些信息有助于监控线程池的性能和工作负载* * @param threadPool 线程池对象,其统计信息将被打印*/
private void printStats(ThreadPoolExecutor threadPool) {Executors.newSingleThreadScheduledExecutor().scheduleAtFixedRate(() -> {// 打印分割线,用于区分不同的统计时间点log.info("=========================");// 打印线程池当前的线程数量log.info("Pool Size: {}", threadPool.getPoolSize());// 打印当前活动线程的数量log.info("Active Threads: {}", threadPool.getActiveCount());// 打印已完成任务的总数log.info("Number of Tasks Completed: {}", threadPool.getCompletedTaskCount());// 打印队列中等待执行的任务数量log.info("Number of Tasks in Queue: {}", threadPool.getQueue().size());// 再次打印分割线,结束本次统计信息的打印log.info("=========================");}, 0, 1, TimeUnit.SECONDS);
}
流程如下:
通过 printStats 方法打印出的日志可以看到,这个线程池中的 2 个线程任务是相当重的。

-
线程池的 2 个线程始终处于活跃状态,队列也基本处于打满状态
-
因为开启了CallerRunsPolicy 拒绝处理策略,所以当线程满载队列也满的情况下,任务会在提交任务的线程,或者说调用 execute 方法的线程执行,也就是说不能认为提交到线程池的任务就一定是异步处理的。如果使用了 CallerRunsPolicy 策略,那么有可能异步任务变为同步执行。从日志的第四行也可以看到这点。这也是这个拒绝策略比较特别的原因
试想一下: 业务代码复用这样的线程池来做内存计算,会怎样???
写一段代码测试下,向线程池提交一个简单的任务,这个任务只是休眠 10 毫秒没有其他逻辑
/*** 创建一个计算任务,该任务在执行时会暂停一段时间然后返回固定的结果* * @return Callable<Integer> 一个计算任务,当运行时会暂停10毫秒,然后返回整数1*/
private Callable<Integer> calcTask() {return () -> {// 暂停10毫秒,模拟耗时操作或等待资源TimeUnit.MILLISECONDS.sleep(10);// 返回固定的结果1,表示任务完成return 1;};
}/*** 错误的异步任务处理示例* * 此方法展示了一个错误的异步任务处理方式,通过提交一个计算任务到线程池并立即获取结果的方式* 这种做法未能正确处理异步任务,因为它会导致线程池的线程阻塞,直到任务完成,从而降低了系统的整体性能和响应速度* * @return 计算任务的结果* @throws ExecutionException 如果计算任务执行失败* @throws InterruptedException 如果线程被中断*/
@GetMapping("wrong")
public int wrong() throws ExecutionException, InterruptedException {return threadPool.submit(calcTask()).get();
}
使用 wrk 工具对这个接口进行一个简单的压测,可以看到 TPS 为 75,性能的确非常差

细想一下,问题其实没有这么简单。因为 原来执行 IO 任务的线程池使用的是CallerRunsPolicy 策略,所以直接使用这个线程池进行异步计算的话,当线程池饱和的时候,计算任务会在执行 Web 请求的 Tomcat 线程执行,这时就会进一步影响到其他同步处理的线程,甚至造成整个应用程序崩溃。
问题修复
解决方案很简单,使用独立的线程池来做这样的“计算任务”即可。计算任务打了双引号,是因为我们的模拟代码执行的是休眠操作,并不属于 CPU 绑定的操作,更类似 IO 绑定的操作,如果线程池线程数设置太小会限制吞吐能力
/*** 创建一个固定大小的线程池用于异步计算任务* * 线程池的配置参数说明:* - 核心线程数和最大线程数都设置为200,意味着线程池只会创建200个线程来执行任务* - 线程空闲时间设为1小时,即线程在空闲1小时后将被终止* - 使用ArrayBlockingQueue作为任务队列,队列大小设为1000,这意味着在队列满的情况下,* 新提交的任务将等待直到队列中有空位* - 通过ThreadFactoryBuilder设置线程名称格式,以便于追踪和管理线程*/
private static ThreadPoolExecutor asyncCalcThreadPool = new ThreadPoolExecutor(200, 200,1, TimeUnit.HOURS,new ArrayBlockingQueue<>(1000),new ThreadFactoryBuilder().setNameFormat("asynccalc-threadpool-%d").build());/*** 使用异步方式计算并返回结果* 本方法通过提交一个计算任务到异步计算线程池,并等待任务完成后的结果* 如果任务抛出异常,将会被传播到调用者* * @return 计算结果* @throws ExecutionException 如果计算任务执行失败或被取消* @throws InterruptedException 如果等待结果时线程被中断*/
@GetMapping("right")
public int right() throws ExecutionException, InterruptedException {// 提交一个异步计算任务到线程池并获取Future对象,用于获取计算结果return asyncCalcThreadPool.submit(calcTask()).get();
}
使用单独的线程池改造代码后再来测试一下性能,TPS 提高到了 1727

在这个案例中,使用了一个只包含两个核心线程的线程池,同时被 I/O 密集型和 CPU 密集型任务共享,导致了性能瓶颈。由于采用了 CallerRunsPolicy 拒绝策略,当线程池达到饱和时,任务被回退到调用线程执行,进而影响了整个应用的性能。
这种配置的影响是显而易见的:异步任务的执行可能变成了同步执行,进一步降低了应用的响应能力。
线程池的混用策略
线程池的设计确实是为了复用资源,但这并不意味着所有任务都应共享同一个线程池。不同类型的任务(如 I/O 密集型与 CPU 密集型)对线程池的需求差异显著,因此需要谨慎选择线程池的配置和混用策略。
任务类型与线程池配置
- I/O 密集型任务:如网络请求或文件操作,通常需要更多的线程来处理潜在的阻塞,因此可配置较高的核心线程数,且队列大小适中。
- CPU 密集型任务:计算密集型任务应该限制线程数量,通常设置为 CPU 核数或 CPU 核数的两倍,以减少线程切换的开销。这类任务可能需要更大的队列来缓冲任务。
最佳实践
- 任务隔离:为不同类型的任务创建独立的线程池,避免混用。
- 合理配置:根据任务的特性(I/O 密集或 CPU 密集)合理设置线程池的核心参数。
- 监控与调优:定期监控线程池的性能指标,根据实际需求进行调整。

相关文章:
Java避坑案例 - 线程池错误的混用引发的性能故障分析
文章目录 问题现象问题分析问题修复线程池的混用策略任务类型与线程池配置最佳实践 问题现象 代码使用了线程池异步处理一些内存中的数据,但通过监控发现处理得非常慢,整个处理过程都是内存中的计算不涉及 IO 操作,也需要数秒的处理时间&…...
七种方法助你找到实用且免费的API服务
随着现代互联网的迅猛发展,API(应用程序编程接口)已成为推动技术创新的核心工具。API使得开发者能够快速实现复杂的功能,如数据分析、自然语言处理、图像识别等,而无需从头编写大量的代码。在这个开放的生态中…...
leetcode-74-搜索二维矩阵
题解: 遍历二维数组matrix中的每个list,如果target在list中则返回True(退出循环);如果全部遍历完还没有出现target则返回False。 核心就是在list中查找target! 代码实现:...
122.WEB渗透测试-信息收集-ARL(13)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:121.WEB渗透测试-信息收集-ARL(12) 输入命令: docker…...
动态规划 —— 路径问题-下降路径最小和
1. 下降路径最小和 题目链接: 931. 下降路径最小和 - 力扣(LeetCode)https://leetcode.cn/problems/minimum-falling-path-sum/description/ 2. 算法原理 状态表示:以莫一个位置位置为结尾 dp[i,j]表示:到…...
【Linux网络】TCP_Socket
目录 TCP协议(传输控制协议) listen状态 accept和connect TCP_echo_server (1)创建套接字 (2)绑定 (3)设置listen状态 (4)loop (5)客户端 多线程远程…...
NVR批量管理软件/平台EasyNVR多个NVR同时管理支持视频投放在电视墙上
在当今智能化、数字化的时代,视频监控已经成为各行各业不可或缺的一部分,无论是公共安全、交通管理、企业监控还是智慧城市建设,都离不开高效、稳定的视频监控系统的支持。而在这些应用场景中,将监控视频实时投放到大屏幕电视墙上…...
Springboot集成阿里云通义千问(灵积模型)
我这里集成后,做成了一个工具jar包,如果有不同方式的,欢迎大家讨论,共同进步。 集成限制: 1、灵积模型有QPM(QPS)限制,每个模型不一样,需要根据每个模型适配 集成开发思路: 因有…...
微信公众号(或微信浏览器)获取openId(网页授权)
下单支付需要openId 首先授权去拿到code --然后调用后太换取openId 1.去拿取code 下图中执行到window.location.href ( redirect_uri 传入当前路径-)–执行后重新跳转到当前页面–但是路径上会带上code参数 //然后调用后台方法–将code传给后台得到 o…...
C++算法第五天
本篇文章继续和大家一起刷算法题 第一题 题目链接 . - 力扣(LeetCode) 题目解析 题目要求: 这是一个连续的子数组 计算子数组内元素的和,若数组内元素的和符合 > target的值并且该子数组的长度是最短的,则返回…...
牛客网剑指Offer-树篇-JZ26 树的子结构
题目 来源:JZ26 树的子结构 描述 输入两棵二叉树A,B,判断B是不是A的子结构。(我们约定空树不是任意一个树的子结构) 假如给定A为{8,8,7,9,2,#,#,#,#,4,7},B为{8,9,2},2个树的结构如下ÿ…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发六,使用SDLVSQT显示yuv文件
使用QT 显示YUV 文件 在最后一帧的时候会不停的显示最后一帧图片。 Vsqtshowyuv.h #pragma once#include <QtWidgets/QWidget> #include "ui_vsqtshowyuv.h" #include <sdl/SDL.h> #include <iostream> #include <fstream> #include <Q…...
Spring 设计模式之适配器模式
Spring 设计模式之适配器模式 适配器模式用到的场景java举例 适配器模式 适配器模式(Adapter Pattern)是一种结构型设计模式,它允许接口不兼容的类一起工作。 其核心思想是通过一个适配器类将不兼容的接口转换成客户端期望的另一个接口&…...
多传感器数字化分析系统
在工业飞速发展的今天,设备的安全稳定运行成为企业高效生产的关键因素。然而,传统的人工巡检方式面临着诸多挑战,如效率低下、漏检误检以及难以精准掌握设备运行状态等。旗晟凭借深厚的技术积累和创新精神,推出了多传感器数字化分…...
Java 基础教学:面向对象编程基础-封装、继承与多态
面向对象编程(OOP)是现代编程的重要范式,Java 语言提供了丰富的 OOP 特性,主要包括封装、继承和多态。本文将详细讲解这三个概念及其实现方式,并提供相应的代码示例。 1. 封装 1.1 概念 封装是将对象的状态…...
Ubuntu环境本地部署DbGate数据库管理工具并实现无公网IP远程访问
文章目录 前言1. 安装Docker2. 使用Docker拉取DbGate镜像3. 创建并启动DbGate容器4. 本地连接测试5. 公网远程访问本地DbGate容器5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定公网地址远程访问 前言 本文主要介绍如何在Linux Ubuntu系统中使用Docker部署DbGate数…...
【AI抠图整合包及教程】Meta SAM 2:视觉分割的革命性飞跃
在人工智能的浪潮中,每一次技术的革新都如同一场视觉盛宴,让我们见证着数字时代的变迁。Meta再次以Segment Anything Model 2(SAM 2)引领了图像和视频分割技术的新纪元。作为首个用于实时、可提示的图像和视频对象分割的统一模型&…...
使用语言模型进行文本摘要的五个级别(llm)
视频链接:5 Levels Of LLM Summarizing: Novice to Expert...
ubuntu交叉编译libffi库给arm平台使用
1.下载并解压: 2.生成makefile 编译: make 编译成功: 安装: make install 安装成功 查看安装后的libffi库...
【jvm】空间分配担保策略
目录 1. 说明2. 工作原理2.1 估算新生代存活对象大小2.2 判断老年代的剩余空间2.3 触发Full GC的条件 3. 相关参数与配置3.1 -XX:HandlePromotionFailure3.2 -XX:PretenureSizeThreshold3.3 -XX:MaxTenuringThreshold3.4 -XX:TargetSurvivorRatio 4.作用与意义 1. 说明 1.在Ja…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
