强势改进!TCN-Transformer时间序列预测
强势改进!TCN-Transformer时间序列预测
目录
- 强势改进!TCN-Transformer时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果








基本介绍
1.Matlab实现TCN-Transformer时间序列预测;
2.运行环境为Matlab2023b;
3.单个变量时间序列预测;
4.data为数据集,excel数据,单列数据集,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
TCN(时间卷积网络):
TCN是一种专门用于处理时间序列数据的深度神经网络。它通过因果卷积和膨胀卷积的组合,有效捕获数据中的长期依赖关系。TCN的核心优势在于其能够并行处理多个时间步的输入,提高模型的训练和推理速度。
Transformer:
Transformer是一种基于自注意力机制的序列建模方法,最初在自然语言处理领域取得巨大成功。它通过自注意力机制建模序列中不同位置之间的依赖关系,捕捉全局上下文信息。Transformer的并行处理能力使其在处理长序列时具有显著优势。
输入层:接收多特征变量时间序列数据。
TCN层:利用因果卷积和膨胀卷积提取数据的全局空间特征。
Transformer层:通过自注意力机制捕捉数据的长期依赖关系,提取时序特征。
注意力融合层:将TCN和Transformer提取的特征作为输入,通过注意力机制融合时空特征。
全连接层:将融合后的特征映射到输出层,进行高精度预测。
程序设计
- 完整源码和数据获取方式私信回复MatlabTCN-Transformer时间序列预测 。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:
强势改进!TCN-Transformer时间序列预测
强势改进!TCN-Transformer时间序列预测 目录 强势改进!TCN-Transformer时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现TCN-Transformer时间序列预测; 2.运行环境为Matlab2023b; 3.单个变量时间序…...
MyBatis的不同参数传递封装
MyBatis参数传递 传参方式 1. 使用 #{} 占位符 这是 MyBatis 中最常用的参数传递方式。它将参数直接替换到 SQL 语句中的占位符位置。 单个参数: <select id"selectUserById" resultType"User">SELECT * FROM users WHERE id #{id}…...
kotlin 协程方法总结
Kotlin 协程是一套强大的异步编程工具,以下是对 Kotlin 协程常用方法的总结: 1. 协程构建器 launch: 启动一个新的协程,不阻塞当前线程,返回一个 Job 对象。 GlobalScope.launch {// 协程体}async: 启动一个新的协程并返回一个…...
脉冲当量计算方法
脉冲的概念: 脉冲当量是指控制器输出一个定位控制脉冲时,所产生的定位控制移动的位移。在直线运动中,它表示移动的距离;在圆周运动中,它表示转动的角度。简而言之,脉冲当量就是电机接收一个脉冲信号后能够移…...
TongWeb7.0.E.6_P11嵌入式版本使用指引(by lqw)
文章目录 声明相关概念手册的使用示范工程安装工程介质 安装前准备示范工程参考(spring-boot-helloWorld-2.x)示范参考 声明 1.本文参考001_TongWeb_V7.0嵌入式版_JavaEE标准容器用户指南_70E6_P11A01.pdf,实际以最新更新的手册为准。 2.本文…...
Node.js:Express 服务 路由
Node.js:Express 服务 & 路由 创建服务处理请求req对象 静态资源托管托管多个资源挂载路径前缀 路由模块化 Express是Node.js上的一个第三方框架,可以快速开发一个web框架。本质是一个包,可以通过npm直接下载。 创建服务 Express创建一…...
C++之多态(上)
C之多态 多态的概念 多态(polymorphism)的概念:通俗来说,就是多种形态。多态分为编译时多态(静态多态)和运⾏时多 态(动态多态),这⾥我们重点讲运⾏时多态,编译时多态(静态多态)和运⾏时多态(动态多态)。编译时 多态(静态多态)主…...
PySpark单机模式安装教程
目录 1. 环境准备 1.1 安装要求 1.2 检查Python和Java环境 2. 下载并解压Spark 2.1 下载Spark 2.2 解压安装包 3. 配置环境变量 4. 配置Spark 5. 启动Spark Shell 6. 运行测试 7. 关闭Spark Shell 8. 常见问题 8.1 兼容性问题 8.2 环境变量配置 总结 1. 环境准备…...
DEVOPS: 认证与调度
概述 不知道大家有没有意识到一个现实,就是大部分时候,我们已经不像以前一样通过命令行,或者可视窗口来使用一个系统了现在我们上微博、或者网购,操作的其实不是眼前这台设备,而是一个又一个集群 通常,这样…...
ICPC区域赛成都站【赛后回顾+总结】
传送门 前言赛后总结赛后回顾赛后感悟 前言 首先,这是本人本赛季第一场XCPC区域赛,也是本人算竞生涯中第一场XCPC区域赛(之前只打过邀请赛和省赛)。 赛后总结 然后赛后总结一下:我队天崩开局,我队出师不利…...
保险大模型革新:全面自动化倒计时
摘 要 大模型于保险业不仅是一个技术升级的过程,更是一种商业模式的变革 未来将会是一切都连接着AI的世界——科技杂志《连线》创始主编凯文凯利(KevinKelly)曾在《5000天后的世界》中预测。 ChatGPT催生大模型热潮已将近两年,…...
《使用Gin框架构建分布式应用》阅读笔记:p212-p233
《用Gin框架构建分布式应用》学习第12天,p212-p233总结,总22页。 一、技术总结 1.JavaScript知识点 (1)class、method (2)function, arrow function, (3)fetch() (4)Promise, then() 2.bootstrap 第5章主要涉及前端技术的运用,作为后…...
点云聚类学习 KMeans/DBSCAN
点云聚类学习--KMeans/DBSCAN OverviewKMeansDBSCAN简单对比 Overview 最近做的东西会处理一些Lidar的点云数据,虽然之前在看Autoware的时候有了解一些聚类的基本原理和实现,但还是稍微再学习一下聚类方法吧,这里就简单记录一下(…...
反悔贪心
Problem - C - Codeforces(初识反悔贪心) 题目: 思路: 代码: #include <bits/stdc.h> #define fi first #define se secondusing namespace std; typedef pair<int,int> PII;string a, b, ans; bool vis…...
汽车软件融合分析
随着汽车智能化、互联化的不断发展,软件在汽车中的重要性日益彰显。从硬件定义汽车,到软件定义汽车,再到AI定义汽车,汽车产业的变革正在加速进行。在这一变革中,软件融合成为了一个重要的趋势。本文将从多个角度对汽车…...
机器人和智能的进化速度远超预期-ROS-AI-
危机 通常,有危险也有机遇才称之为危机。 从2020年启动转型自救,到2021年发现危险迫在眉睫,直到2024年也没有找到自己满意的出路。 共识 中产阶级知识分子共有的特性和一致的推断。 200年前的推断,在如今得到了验证。 机器人…...
5天学习RAG路线图,你信吗?
RAG是"Retrieval Augmented Generation"的缩写,让我们来拆解这个术语,了解RAG的本质: R -> Retrieval(检索) A -> Augmented(增强) G -> Generation(生成&…...
JIME智创:抖音创作者的AI绘画与视频生成创作神器
在短视频和社交内容创作的时代,创意和速度成了成功的关键。无论是视频博主、图文创作者还是品牌推广人,他们都面临着如何快速生成高质量图片与视频素材的挑战。JIME智创正是针对这一需求推出的AI创作工具,专为抖音的图文和视频创作者设计&…...
基于SpringBoot和PostGIS的世界各国邻国可视化实践
目录 前言 一、空间数据查询基础 1、空间数据库基础 2、空间相邻查询 二、SpringBoot后台功能设计 1、后台查询接口的实现 2、业务接口设计 三、Leaflet进行WebGIS开发 1、整体结构介绍 2、相邻国家展示可视化 四、成果展示 1、印度及其邻国 2、乌克兰及其邻国 3、…...
Halcon相机外参自理解
外参描述了相机在世界坐标系中的位置和朝向,即它将世界坐标转换为相机坐标的几何变换。具体来说,外参包括一个 旋转矩阵 R R R 和一个 平移向量 t t t,它们共同构成了将世界坐标变换到相机坐标系的刚体变换 相机标定的Pose0代表了相机在外界…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
算法—栈系列
一:删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...
【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...
生信服务器 | 做生信为什么推荐使用Linux服务器?
原文链接:生信服务器 | 做生信为什么推荐使用Linux服务器? 一、 做生信为什么推荐使用服务器? 大家好,我是小杜。在做生信分析的同学,或是将接触学习生信分析的同学,<font style"color:rgb(53, 1…...
