当前位置: 首页 > news >正文

深度学习-BP算法详解

        BP(Back Propagation,反向传播)是训练神经网络的重要算法之一。它通过计算误差并将误差反向传播,以更新神经网络中的权重和偏置,进而使模型更好地拟合数据。

1. BP算法的基本原理

反向传播的基本思想是:

  1. 前向传播(Forward Propagation):将输入数据通过各层神经网络的计算,传递到输出层,得到预测输出。
  2. 计算误差(Compute Error):根据损失函数计算输出层的预测值与实际标签值之间的误差。
  3. 反向传播误差(Back Propagation of Error):将输出层的误差逐层反向传播到各个隐藏层,以计算每个参数对误差的敏感度(即梯度)。
  4. 更新权重和偏置(Update Parameters):使用优化算法(如梯度下降)调整每层的权重和偏置,以最小化误差。

BP算法是基于梯度下降法的优化过程,通过不断更新网络参数,使得网络的输出逐渐逼近真实值。

2. BP算法的步骤

假设一个简单的神经网络结构,包含输入层、隐藏层和输出层三层,具体步骤如下:

Step 1: 前向传播
  1. 输入层到隐藏层:输入层的每一个神经元传递到隐藏层时,经过权重加权和偏置,再通过激活函数处理,得到隐藏层的激活值。
  2. 隐藏层到输出层:隐藏层的输出也通过权重、偏置及激活函数,传递到输出层,产生最终的预测值 y^​。
Step 2: 计算损失
  • 使用损失函数计算预测值 y^ 与真实值 y 之间的误差。例如,均方误差(MSE)在回归问题中常用,其公式为:
  • 或者在分类问题中使用交叉熵损失:
Step 3: 反向传播误差

反向传播的关键在于计算每层的梯度,即损失函数对各层权重的偏导数。

  • 输出层到隐藏层:首先计算输出层的梯度。损失函数 L 对输出层的权重和偏置的梯度通过链式法则计算。
  • 隐藏层到输入层:然后将误差逐层向前传播到隐藏层,再从隐藏层传播到输入层,对每一层的权重和偏置都进行梯度计算。
Step 4: 更新参数

使用梯度下降法更新权重和偏置:

其中,α 是学习率,用于控制参数更新的步伐大小。

3. BP算法的数学推导

假设一个简单的三层网络结构,包括输入层、隐藏层、输出层。对于网络中的某一层 ,权重矩阵为,激活值为 ,则:

前向传播公式
  • 激活函数的输入为:
  • 激活值为:
反向传播公式

在反向传播时,误差项的传递是根据损失函数对各层参数的偏导数计算的:

  • 对于输出层:
  • 对于隐藏层:

权重和偏置的梯度为:

4. BP算法的局限性

  • 梯度消失和梯度爆炸:在深层网络中,梯度在反向传播过程中可能会逐渐消失或增大,导致训练不稳定。解决方案包括使用 ReLU 等激活函数,或采用正则化技术。
  • 收敛速度慢:尤其是在高维空间中,梯度下降的收敛速度较慢,可能需要很多次迭代。改进方法有动量、Adam 等优化算法。
  • 容易陷入局部最优:神经网络的损失函数通常是非凸的,因此容易陷入局部最优。随机初始化、批量归一化等方法可以缓解这一问题。

5. BP算法的改进

  • 动量梯度下降(Momentum):为梯度添加动量项,以加速收敛并避免震荡。
  • 自适应学习率优化算法(如 AdaGrad、RMSProp 和 Adam):在不同的迭代中动态调整学习率,以提高训练效率。
  • 批量归一化(Batch Normalization):在每层输入上进行归一化,减少梯度消失的问题,并加速收敛。
  • 更高级的激活函数(如 ReLU、Leaky ReLU、ELU 等):避免梯度消失和梯度爆炸,提高模型的表达能力。

 

相关文章:

深度学习-BP算法详解

BP(Back Propagation,反向传播)是训练神经网络的重要算法之一。它通过计算误差并将误差反向传播,以更新神经网络中的权重和偏置,进而使模型更好地拟合数据。 1. BP算法的基本原理 反向传播的基本思想是: …...

Java审计对比工具JaVers使用

最近有个需求,需要将页面的内容生成excel或者word文档,而且每次的修改都需要生成新的版本,同时需要记录每次修改变化的内容。我们会把每次的修改的内容提交赋值给一个java对象,同时存储到数据库一条新数据,对应数据表一…...

unity中预制体的移动-旋转-放缩

unity中预制体的移动-旋转-放缩 左上侧竖栏图标介绍Tools(手形工具)Move Tool(移动工具,单位米)Rotate Tool(旋转工具,单位角度)Scale Tool(缩放工具,单位倍数)Rect Tool(矩形工具)Transform Tool(变换工具)图标快捷键对照表工具使用的小技巧…...

【压力测试】如何确定系统最大并发用户数?

一、明确测试目的与了解需求 明确测试目的:首先需要明确测试的目的,即为什么要确定系统的最大并发用户数。这通常与业务需求、系统预期的最大用户负载以及系统的稳定性要求相关。 了解业务需求:深入了解系统的业务特性,包括用户行…...

ubuntu常用基本指令简记

一、在线帮助 1、help Linux命令可以分为内部命令和外部命令,内部命令就是由Linux默认Shell-bash提供的命令,而非bash提供的命令就是外部命令。 对于内部命令,可以使用help命令来获取帮助 形式为 help 指令 2、man 在日常使用中碰到的绝…...

【解决方案】用git reset --hard重置了提交但是发现reset了一些本不该reset的内容,是不是寄了?

使用 git reset --hard [commit_id] 命令后,所有的更改(包括暂存区和工作区的更改)都会被重置到指定的提交。如果想要撤销这个操作,恢复到重置之前的状态,可以尝试以下方法: 1. 使用 Git Reflog 恢复 Git…...

ACM模式下Java读取控制台输入注意事项及输出规范化

背景 在ACM模式下。需要我们去接受输入的参数,一般是使用Scanner去读取控制台输入的参数System.in。 不熟悉的情况下,很容易出现问题,针对常见的问题做一个总结。 一、nextXxx 如next,nextInt,nextFloat&#xff0c…...

面试题整理 2

总结了本次面试遇到的值得整理记录的面试题。 目录 变量赋值判断 变量判断 Foreach使用 Mysql优化策略 合理的索引设计 查询优化 数据表结构设计 配置优化 合理使用事务 定期维护数据库 使用缓存 监控与性能分析 Redis主从复制 介绍 配置 示例 Redis 数据类型…...

华为自研仓颉编程语言官网上线 首个公测版本开放下载

仓颉编程语言官网正式公开上线,同时首个公测版本开放下载。本次仓颉编程语言官网上线了首页、在线体验、文档、学习、下载、动态以及三方库共六个模块,可供开发和学习和体验。 据悉,仓颉编程语言是在今年6月的华为开发者大会上正式公布&…...

NVR监测软件/设备EasyNVR多品牌NVR管理工具/设备对城市安全有哪些具体益处?

在智慧城市的建设中,各种先进的技术系统正发挥着越来越重要的作用。其中,NVR监测软件/设备EasyNVR作为一种高效的视频边缘计算网关,不仅能够实现视频数据的采集、编码和存储,还能与其他智慧城市系统进行深度集成,共同推…...

MFC工控项目实例二十八模拟量信号每秒采集100次

用两个多媒体定时器,一个定时0.1秒计时,另一个定时0.01秒用来对模拟量信号采集每秒100次。 1、在SEAL_PRESSUREDlg.h中添加代码 class CSEAL_PRESSUREDlg : public CDialo { public:CSEAL_PRESSUREDlg(CWnd* pParent NULL); // standard constructor&a…...

安装scrcpy-client模块av模块异常,环境问题解决方案

背景 使用 pip install scrcpy-client命令出现以下报错 performance hint: av\logging.pyx:232:5: Exception check on log_callback will always require the GIL to be acquired. Possible solutions: 1. Declare log_callback as noexcept if you control the definition …...

硅谷甄选(11)角色管理

角色管理模块 10.1 角色管理模块静态搭建 还是熟悉的组件&#xff1a;el-card、el-table 、el-pagination、el-form <template><el-card><el-form :inline"true" class"form"><el-form-item label"职位搜索"><el-…...

C语言结构体 变量对齐原理

以32位Linux为例&#xff0c;默认对齐值是4. 对齐原则通常有以下几种&#xff1a; 第一个成员在与结构体变量偏移量为0的地址处。其他成员变量要对齐到某个数字&#xff08;对齐参数&#xff09;的整数倍的地址上。结构体总大小为最大对齐参数的整数倍。嵌套结构体要对齐到…...

【oracle】正则表达式

文章目录 1.介绍1.1 什么是正则表达式1.2 什么是Oracle正则表达式 2. Oracle正则表达式的基础知识2.1 常用的元字符2.2 常用的转义序列2.3 常用的量词 3. Oracle正则表达式的函数3.1 REGEXP_LIKE3.2 REGEXP_SUBSTR3.3 REGEXP_REPLACE3.4 REGEXP_INSTR3.5 REGEXP_COUNT 4. Oracl…...

如何找到网上爆款内容,快速复制扩大品牌声量

社媒内容爆款复制是现代营销中的一个重要策略&#xff0c;它对于提升品牌声量、曝光度和知名度具有显著效果。 首先什么是爆款&#xff1f; 爆款内容指的是在社交媒体或其他在线平台上迅速获得大量关注、分享和讨论的内容。 准确、及时找到这部分品牌相关的爆款内容&#xf…...

补齐:相交链表:扣160

梦重新开始的地方 – 相交链表 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。图示两个链表在节点 c1 开始相交&#xff1a; 示例&#xff1a; 何解&#xff1f; 暴力&…...

Java项目实战II基于Java+Spring Boot+MySQL的智能推荐的卫生健康系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 基于Java、…...

NET Core的AOP实施方法1 DispatchProxy

NET Core的AOP实施方法1 DispatchProxy NET Framework的AOP实施方法1 ContextBoundObject NET Framework的AOP实施方法2 RealProxy 源码见Github DispatchProxy NET Core DispatchProxy 是一个在 .NET 框架中引入的概念&#xff0c;特别是在 C# 语言中。它是一种特殊类型的代…...

AIGC生成式人工智能——泼天的富贵(三)

人工智能作为第四次工业革命的标志性技术&#xff0c;正在深刻地改变着全球经济、社会结构和人类生活方式。 今天的人工智能&#xff0c;就像当年的房地产经济&#xff0c;未来至少会有十年的红利期。 一、人工智能&#xff0c;给我带来了第二桶金 你永远赚不到你认知以外的…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...