当前位置: 首页 > news >正文

论文 | Legal Prompt Engineering for Multilingual Legal Judgement Prediction

        这篇文章探讨了如何利用“法律提示工程”(LPE)来指导大型语言模型(LLM)进行多语言法律判决预测(LJP)。
主要内容:
        LPE 的概念: LPE 是指通过设计特定的提示(prompt)来引导 LLM 进行自然语言处理(NLP)任务,无需额外的训练或微调。
        LJP 任务:  LJP 任务的目标是根据案件文本自动预测法院的判决结果。
        数据集:  研究使用了来自欧洲人权法院(ECHR)和瑞士联邦最高法院(FSCS)的数据集,涵盖了英语、德语、法语和意大利语。
        提示设计:  研究人员通过迭代的方式设计了针对 LJP 任务的提示模板,包括案件文本、问题、答案选项等。
实验结果:

        实验结果表明,零样本 LPE 方法在 LJP 任务上取得了比基线模型更好的性能,但仍然落后于监督学习方法。
        未来工作:  研究人员计划与法律专家合作,开发更好的法律提示,并将其应用于其他法律 NLP 任务,例如法律摘要和法律问答。
文章亮点:
        零样本学习:  研究证明了 LLM 可以通过零样本学习的方式应用于 LJP 任务,无需额外的训练数据。
        多语言支持:  研究展示了 LPE 方法可以应用于多种语言,具有广泛的应用价值。
        提示设计的重要性:  研究强调了提示设计在 LPE 方法中的重要性,并展示了如何通过迭代的方式优化提示模板。
文章局限性:
        性能不足:  与监督学习方法相比,零样本 LPE 方法的性能仍有较大差距。
        提示设计的复杂性:  设计有效的提示模板需要专业知识,并且可能需要针对不同的任务和数据集进行调整。
        可解释性:  LLM 的预测结果缺乏可解释性,难以理解其背后的推理过程。
        总体而言,这篇文章为 LPE 在法律领域的应用提供了有价值的探索,并展示了其在 LJP 任务上的潜力。 尽管存在一些局限性,但 LPE 方法仍然具有很大的发展空间,未来有望在法律 NLP 领域发挥更大的作用。
一些额外的思考:
        如何提高 LPE 方法的性能?  可以尝试使用更强大的 LLM、设计更复杂的提示模板、或者结合监督学习方法。
        如何提高 LLM 预测结果的可解释性?  可以尝试使用可解释性方法,例如注意力机制或者可视化技术,来理解 LLM 的推理过程。
        LPE 方法如何应用于其他法律 NLP 任务?  可以根据不同的任务特点,设计相应的提示模板,并评估 LPE 方法的有效性。
 

相关文章:

论文 | Legal Prompt Engineering for Multilingual Legal Judgement Prediction

这篇文章探讨了如何利用“法律提示工程”(LPE)来指导大型语言模型(LLM)进行多语言法律判决预测(LJP)。主要内容: LPE 的概念: LPE 是指通过设计特定的提示(promp…...

国科安芯抗辐照MCU和CANFD芯片发布

国科安芯科技有限公司近期发布了两款重要的芯片产品:抗辐照MCU芯片和抗辐照CANFD芯片。这两款芯片的发布标志着国科安芯在高性能、高安全性芯片产品研制方面取得了显著进展,特别是在抗辐照技术领域。 1. 抗辐照MCU芯片:国科安芯研发的AS32A4…...

C++ 并发专题 - 无锁数据结构(概述)

一:概述: 无锁数据结构是一种在多线程环境中实现线程安全的结构,它允许多个线程在没有传统锁机制的情况下并发访问和修改数据。这种设计的目标是提高程序的性能和响应性,避免锁竞争和上下文切换的开销。 二:原理&…...

NLP领域的经典算法和模型

在自然语言处理(NLP)领域,经典算法和模型众多,它们在不同任务中发挥着重要作用。以下是一些NLP领域的经典算法和模型的详细介绍: 一、基础模型 词袋模型(Bag of Words,BoW) 原理&a…...

提升安全上网体验:Windows 11 启用 DOH(阿里公共DNS)

文章目录 阿里公共 DNS 介绍免费开通云解析 DNS 服务Windows 编辑 DNS 设置配置 IPv4配置 IPv6 路由器配置 DNS 阿里公共 DNS 介绍 https://alidns.com/ 免费开通云解析 DNS 服务 https://dnsnext.console.aliyun.com/pubDNS 开通服务后,获取 DOH 模板&#xff0…...

论文概览 |《Journal of Transport Geography》2024.10 Vol.120

本次给大家整理的是《Journal of Transport Geography》杂志2024年9月第120卷的论文的题目和摘要,一共包括17篇SCI论文! 论文1 Modelling scenarios in planning for future employment growth in Stockholm 斯德哥尔摩未来就业增长规划情景建模 【摘要…...

yum不能使用: cannot find a valid baseurl for repo: base/7/x86_64

使用yum命令时报错: 原因: CentOS 已经停止维护的问题。2020 年 12 月 8 号,CentOS 官方宣布了停止维护 CentOS Linux 的计划,并推出了 CentOS Stream 项目,CentOS Linux 8 作为 RHEL 8 的复刻版本,生命周期…...

什么品牌的护眼台灯比较好?五款护眼效果比较明显的护眼台灯

在当今信息爆炸的时代背景下,挑选一款真正符合个人需求的护眼台灯,确实是一项不小的挑战。市场上品牌众多、型号繁杂,功能特点各不相同,价格区间也相当广泛,许多消费者在选购时往往感到迷茫不已。当大家询问“什么品牌…...

HTML 表单设计与验证

创建 HTML 表单的步骤如下&#xff1a; 使用 <form> 标签来创建表单&#xff0c;<form> 标签有一个 action 属性&#xff0c;用于指定表单提交的目标 URL。 在 <form> 标签内部&#xff0c;使用 <input> 标签来创建输入框。<input> 标签有一个 …...

qt QDialog详解

1、概述 QDialog是Qt框架中用于创建对话框的类&#xff0c;它继承自QWidget。QDialog提供了一个模态或非模态的对话框&#xff0c;用于与用户进行交互。模态对话框会阻塞其他窗口的输入&#xff0c;直到用户关闭该对话框&#xff1b;而非模态对话框则允许用户同时与多个窗口进…...

supervisor服务“Exited too quickly“解决方案

【初始问题】supervisor创建一个守护进程&#xff0c;老是提示启动失败 【结论】进程执行后&#xff0c;短时间就断开了 Ⅰ 问题分析 supervisor开启进程守护失败了&#xff0c;查看下进程执行记录&#xff0c;显示这个进程的指令执行报错了 接下来&#xff0c;查看下superv…...

动态规划 —— 路径问题-地下城游戏

1. 地下城游戏 题目链接&#xff1a; 174. 地下城游戏 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/dungeon-game/description/ 2. 算法原理 状态表示&#xff1a;以莫一个位置位置为结尾或者以莫一个位置为起点 dp[i&#xff0c;j]表示&#xff1a…...

沈阳乐晟睿浩科技有限公司抖音小店短视频时代的电商蓝海

在数字化浪潮席卷全球的今天&#xff0c;电子商务以其独特的魅力和无限的潜力&#xff0c;成为了推动经济发展的新引擎。作为这一领域的佼佼者&#xff0c;沈阳乐晟睿浩科技有限公司凭借其深厚的行业积淀与创新精神&#xff0c;正逐步成为众多商家在抖音小店平台上腾飞的强大助…...

ubuntu20.04安装ros与rosdep

目录 前置配置 配置apt清华源 配置ros软件源 添加ros安装源&#xff08;中科大软件源&#xff09; 设置秘钥 更新源 ros安装 安装ros 初始化 rosdep 更新 rosdep 设置环境变量 安装 rosinstall 安装验证 启动海龟仿真器 操控海龟仿真器 rosdep安装更新 安装 使用…...

推理加速papers

《A Survey on Efficient Inference for Large Language Models》2024-07 1. Q、K、V的计算&#xff0c;都是矩阵乘法&#xff1b; 2. prefilling阶段&#xff0c;每次计算&#xff0c;Q是N个向量一起&#xff1b;decoding阶段&#xff0c;每次计算&#xff0c;Q是1个向量计算&…...

【02基础】- RabbitMQ基础

目录 2- RabbitMQ2-1 介绍和安装安装 2-2 RabbitMQ 快速入门2-3 RabbitMQ 数据隔离 3- Java客户端3-1 快速入门AMQP快速入门&#x1f4d1;小结&#xff1a;SpringAMQP如何收发消息&#xff1f; 3-2 WorkQueues 任务模型案例-使用 WorkQueue 单队列绑定多消费者&#x1f4d1;小结…...

vue3中跨层传递provide、inject

前置说明 在 Vue 3 中&#xff0c;provide 和 inject 是一对用于跨组件树传递数据的 API。它们允许你在祖先组件中使用 provide 提供数据或服务&#xff0c;然后在后代组件中使用 inject 来获取这些数据或服务。这种方式特别适用于跨多个层级的组件传递数据&#xff0c;而不需要…...

Nacos-1.4.6升级2.3.2

一、nacos-2.3.2部署(非升级测试步骤) 1、使用nginx进行代理 # nginx-1.25.5 docker run -d --name nginx-nacos --network nacos --privilegedtrue -v /data/nacos/nginx.conf:/etc/nginx/conf.d/default.conf -p 8848:8848 nginx:latest2、创建nacos服务 # nacos-2.3.2 do…...

东识集中文印管理系统|DW-S408系统的主要功能

集中文印管理系统以涉密文件集中管理为目标&#xff0c;实现办公文件汇总、打印信息生成、文件打印、文件追溯等功能&#xff0c;将用户与打印设备分离&#xff0c;有效防止纸媒泄密。 集中文印管理系统是由客户端和服务端两部分构成&#xff0c;客户端能够将打印文件上传至服…...

text-foreground讲解

1、fore单词讲解 fore 是 “forward” 或 “front” 的简写&#xff0c;意思是"前面的"、“前景的”。 一些常见的相关英文词&#xff1a; foreground fore ground&#xff0c;意思是"前景" background back ground&#xff0c;意思是"背景&qu…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...