xmuoj [蒙德里安的梦想] 状压dp个人笔记
本题是状压dp经典题目,很多人都是通过这一题开始对状压dp有所了解。
在进行讲解之前,我们先通过几个问答大致了解状压dp。
一、问答
1. 问题:什么是状压dp?
回答:状压dp即为状态压缩动态规划,何为状态压缩?怎么进行状态压缩?是个问题。
这个问题涉及到了状压dp的核心思想——把问题的状态压缩成整数,因为整数便于存储和进行状态转移。
2. 问题:状压dp状态的存储形式是?
回答:前面已经说了,问题的状态应该压缩成整数,但是单纯的10进制整数显然无法满足最小子问题的状态存储,或者说,浪费了很多存储空间。对于最小子问题,一般情况下,只有 1 和 0 两种状态,那么,我们用二进制存储显然更优。
3. 问题:用二进制存储状态只是存储上更优吗?
回答:不然,二进制天然的位运算可以大大加速状态转移。这也是状压dp不会超时的重要原因。
哈哈,关键词get到了吗?二进制、位运算 ✿✿ヽ(°▽°)ノ✿
二、下面进行例题讲解
错误思路我就不讲了,因为错误思路千奇百怪,我也是开始就想偏了(我上来就是dp[n][m]一顿转移)。
首先,我们应该明白的是,我们只能放横着放或者竖着放长方形,一旦横着放的确定了(横着的放法要在合理情况下,总不能让竖的放不了吧O(∩_∩)O ),那么竖着的一定就只有一种可能了,所以,我们只需考虑横着放有多少种合理的放法即可。
下面该怎么做呢?已经焦头烂额了,开始吟唱
对于第 i 列,我们假设 0~ i -1 列的横着放的长方形已经全部放好了,我们都知道,横着放的一定有突出的部分。
就比如说,对于这张图,第 i 列突出的部分是 0、1、3这三个位置,用二进制表示即为101100,对应十进制的44,所以,这个状态就是 f [ i ][ 44 ]
不难发现,第 i 列状态是由第 i-1 列的状态转移过来的
具体来说,f [ i ][ j ] +=所有满足条件的 f[ i-1][ k ]
要满足什么条件呢?
1. j 和 k不能重叠(显然长方形不能重叠放置,可以重叠的话放法就无穷尽了)
对于这个条件,保证 j&k==0 即可
2. j和k放完之后,第i-1列不能有连续奇数个0(因为这样就放不了竖着的了)
定义isok[ i ]表示 i 的二进制表示是否满足上述条件,isok[ i ] = true表示满足条件,
保证 isok[ j | k ]为 true 即可
三、C++ 代码
#include<bits/stdc++.h>
using namespace std;
const int N = 12, M = 1 << N;
int n, m;
bool isok[M];
long long f[N][M];
int main() {while (cin >> n >> m, n || m) {for (int i = 0;i < 1<<n;i++) {//计算isok[i]isok[i] = true;int cnt = 0;for (int j = 0;j < n;j++) {if (i >> j & 1) {if (cnt % 2)isok[i] = false;cnt = 0;}else cnt++;}if (cnt % 2)isok[i] = false;}memset(f, 0, sizeof f);f[0][0] = 1;for (int i = 1;i <=m;i++) {for (int j = 0;j < 1<<n;j++) {for (int k = 0;k < 1<<n;k++) {if (isok[j | k] && !(j & k)) {//满足两个条件才能转移f[i][j] += f[i - 1][k];}}}}cout << f[m][0] << endl;//代表到 m列且没有突出的情况(列数为0~m-1,m列表示遍历完成了)}return 0;
}
四、结尾
写完再回首,不禁又感叹状压dp的巧妙,如此优雅,妙哉妙哉。
这就是今天要分享的内容,感谢观看!
相关文章:

xmuoj [蒙德里安的梦想] 状压dp个人笔记
本题是状压dp经典题目,很多人都是通过这一题开始对状压dp有所了解。 在进行讲解之前,我们先通过几个问答大致了解状压dp。 一、问答 1. 问题:什么是状压dp? 回答:状压dp即为状态压缩动态规划,何为状态压缩&#x…...
ubuntu22安装搜狗输入法不能输入中文
关闭Wayland 在/etc/gdm3/custom.conf文件内,取消注释WaylandEnable cat /etc/gdm3/custom.conf | grep WaylandEnable WaylandEnablefalse 其它步骤参考搜狗官方教程 https://pinyin.sogou.com/linux/help.php...

HtmlAgilityPack 操作详解
目录 1.安装 HtmlAgilityPack 2. 示例 HTML 3. 使用 HtmlAgilityPack 进行 HTML 解析与操作 4. 代码详解 1.加载html文档 2.选择元素 3. 提取属性 4.修改属性 5.常用的几种获取元素的 XPath 写法 HtmlAgilityPack: 轻量且高效,适合进行常规的 H…...

基于SSM医院门诊互联电子病历管理系统的设计
管理员账户功能包括:系统首页,个人中心,用户管理,医生管理,项目分类管理,项目信息管理,预约信息管理,检查信息管理,系统管理 用户账号功能包括:系统首页&…...

【读书笔记/深入理解K8S】集群网络
前言 上一章讲了集群控制器的一个大概的原理,这一章讲一下集群网络。网络是集群通信的载体,因为该书是阿里云团队出品的,所以也以阿里云的集群网络方案为例,其他云厂商的网络集群方案一般来说也大同小异。所以通过本章的学习&…...

【专有网络VPC】连接公网
通过ECS实例固定公网IP、弹性公网IP、NAT网关、负载均衡使专有网络中的云资源可以访问公网(Internet)或被公网访问。 概述 专有网络是您自定义的云上私有网络。专有网络中的云资源默认无法访问公网,也无法被公网访问。您可以通过配置ECS实例…...

论文 | Legal Prompt Engineering for Multilingual Legal Judgement Prediction
这篇文章探讨了如何利用“法律提示工程”(LPE)来指导大型语言模型(LLM)进行多语言法律判决预测(LJP)。主要内容: LPE 的概念: LPE 是指通过设计特定的提示(promp…...
国科安芯抗辐照MCU和CANFD芯片发布
国科安芯科技有限公司近期发布了两款重要的芯片产品:抗辐照MCU芯片和抗辐照CANFD芯片。这两款芯片的发布标志着国科安芯在高性能、高安全性芯片产品研制方面取得了显著进展,特别是在抗辐照技术领域。 1. 抗辐照MCU芯片:国科安芯研发的AS32A4…...
C++ 并发专题 - 无锁数据结构(概述)
一:概述: 无锁数据结构是一种在多线程环境中实现线程安全的结构,它允许多个线程在没有传统锁机制的情况下并发访问和修改数据。这种设计的目标是提高程序的性能和响应性,避免锁竞争和上下文切换的开销。 二:原理&…...
NLP领域的经典算法和模型
在自然语言处理(NLP)领域,经典算法和模型众多,它们在不同任务中发挥着重要作用。以下是一些NLP领域的经典算法和模型的详细介绍: 一、基础模型 词袋模型(Bag of Words,BoW) 原理&a…...

提升安全上网体验:Windows 11 启用 DOH(阿里公共DNS)
文章目录 阿里公共 DNS 介绍免费开通云解析 DNS 服务Windows 编辑 DNS 设置配置 IPv4配置 IPv6 路由器配置 DNS 阿里公共 DNS 介绍 https://alidns.com/ 免费开通云解析 DNS 服务 https://dnsnext.console.aliyun.com/pubDNS 开通服务后,获取 DOH 模板࿰…...

论文概览 |《Journal of Transport Geography》2024.10 Vol.120
本次给大家整理的是《Journal of Transport Geography》杂志2024年9月第120卷的论文的题目和摘要,一共包括17篇SCI论文! 论文1 Modelling scenarios in planning for future employment growth in Stockholm 斯德哥尔摩未来就业增长规划情景建模 【摘要…...

yum不能使用: cannot find a valid baseurl for repo: base/7/x86_64
使用yum命令时报错: 原因: CentOS 已经停止维护的问题。2020 年 12 月 8 号,CentOS 官方宣布了停止维护 CentOS Linux 的计划,并推出了 CentOS Stream 项目,CentOS Linux 8 作为 RHEL 8 的复刻版本,生命周期…...

什么品牌的护眼台灯比较好?五款护眼效果比较明显的护眼台灯
在当今信息爆炸的时代背景下,挑选一款真正符合个人需求的护眼台灯,确实是一项不小的挑战。市场上品牌众多、型号繁杂,功能特点各不相同,价格区间也相当广泛,许多消费者在选购时往往感到迷茫不已。当大家询问“什么品牌…...
HTML 表单设计与验证
创建 HTML 表单的步骤如下: 使用 <form> 标签来创建表单,<form> 标签有一个 action 属性,用于指定表单提交的目标 URL。 在 <form> 标签内部,使用 <input> 标签来创建输入框。<input> 标签有一个 …...

qt QDialog详解
1、概述 QDialog是Qt框架中用于创建对话框的类,它继承自QWidget。QDialog提供了一个模态或非模态的对话框,用于与用户进行交互。模态对话框会阻塞其他窗口的输入,直到用户关闭该对话框;而非模态对话框则允许用户同时与多个窗口进…...

supervisor服务“Exited too quickly“解决方案
【初始问题】supervisor创建一个守护进程,老是提示启动失败 【结论】进程执行后,短时间就断开了 Ⅰ 问题分析 supervisor开启进程守护失败了,查看下进程执行记录,显示这个进程的指令执行报错了 接下来,查看下superv…...

动态规划 —— 路径问题-地下城游戏
1. 地下城游戏 题目链接: 174. 地下城游戏 - 力扣(LeetCode)https://leetcode.cn/problems/dungeon-game/description/ 2. 算法原理 状态表示:以莫一个位置位置为结尾或者以莫一个位置为起点 dp[i,j]表示:…...

沈阳乐晟睿浩科技有限公司抖音小店短视频时代的电商蓝海
在数字化浪潮席卷全球的今天,电子商务以其独特的魅力和无限的潜力,成为了推动经济发展的新引擎。作为这一领域的佼佼者,沈阳乐晟睿浩科技有限公司凭借其深厚的行业积淀与创新精神,正逐步成为众多商家在抖音小店平台上腾飞的强大助…...

ubuntu20.04安装ros与rosdep
目录 前置配置 配置apt清华源 配置ros软件源 添加ros安装源(中科大软件源) 设置秘钥 更新源 ros安装 安装ros 初始化 rosdep 更新 rosdep 设置环境变量 安装 rosinstall 安装验证 启动海龟仿真器 操控海龟仿真器 rosdep安装更新 安装 使用…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...