【PTA】4-2 树的同构【数据结构】
给定两棵树 T1 和 T2。如果 T1 可以通过若干次左右孩子互换就变成 T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

图一

图二
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数 n (≤10),即该树的结点数(此时假设结点从 0 到 n−1 编号);随后 n 行,第 i 行对应编号第 i 个结点,给出该结点中存储的 1 个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出 “-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
- 对于每棵树,其节点的数量、层次结构和连接关系必须完全一致。
- 如果树上的节点带有特定的标签或值,则这些标签也必须一一对应相等。
既然判断树的同构,那我们就应该先构建一个树形结构:
typedef struct tree
{char data; // 节点数据int left; // 左子节点索引int right; // 右子节点索引
} tree;
- 声明了两个全局数组
T1和T2,以及一个检查数组check,用于存储两棵树的节点信息和标记哪些节点已经被访问过。
// 全局数组用于存放两个树的节点信息
tree T1[MAXTREE], T2[MAXTREE];
// 检查数组,用于标记已访问过的节点
int check[MAXTREE];
构建树的函数 (
buildTree()):
- 接受一个指向
tree结构体数组的指针参数t,用于接收用户输入并构建树。- 用户需要输入节点总数,然后依次输入每个节点的数据及其左右孩子的索引。
- 函数通过遍历输入的节点信息,填充
tree结构体数组,并找到根节点的索引后返回。判断两棵树是否同构的函数 (
Isomorphism()):
- 这是一个递归函数,接受两个参数,分别为两棵树的根节点索引。
- 通过对比两棵树的各个节点数据和子节点结构,确定它们是否同构。
// 构建树的函数
int buildTree(tree* t);
// 判断两棵树是否同构的递归函数
int Isomorphism(int root1, int root2);
主函数调用buildTree函数构建树形结构
int main()
{int r1, r2;// 分别构建两棵树r1 = buildTree(T1);r2 = buildTree(T2);// 如果两棵树同构,打印"Yes"if (Isomorphism(r1, r2)) {printf("Yes\n");}// 否则打印"No"else{printf("No\n");}return 0;
}
构建树的函数
int buildTree(tree* t)
{int root = null, i;int n;char cleft, cright;// 输入节点数量scanf("%d", &n);// 如果节点数量大于零if (n > 0){// 初始化检查数组memset(check, 0, sizeof(check));// 遍历所有节点,输入节点数据及左右子节点索引for (i = 0; i < n; i++){// 忽略换行符getchar();// 输入当前节点的数据及左右子节点索引scanf("%c %c %c", &t[i].data, &cleft, &cright);// 处理左子节点if (cleft!= '-') {t[i].left = cleft - '0'; // 将字符形式的索引转为整数check[t[i].left] = 1; // 标记此子节点已被访问} else t[i].left = null; // 空节点// 处理右子节点if (cright!= '-') {t[i].right = cright - '0'; // 将字符形式的索引转为整数check[t[i].right] = 1; // 标记此子节点已被访问} else {t[i].right = null; // 空节点}}// 找到根节点for (i = 0; i < n; i++){//没有被访问过if (!check[i]) {break;}}// 返回根节点索引root = i;}// 返回根节点索引return root;
}
memset(check, 0, sizeof(check)); :
这里使用memset函数清空check数组,准备记录哪些节点已经被访问过。
下面是判断两棵树是否同构的算法:
int Isomorphism(int root1, int root2)
{// 如果两个根节点都为空,返回真if (root1 == null && root2 == null){return 1;}// 如果两个根节点不都为空else{// 如果只有一个根节点为空,返回假if (root1 == null && root2!= null || root1!= null && root2 == null){return 0;}else{// 如果两个根节点都不为空且数据不同,返回假if (T1[root1].data!= T2[root2].data){return 0;}// 如果两个根节点数据相同,继续比较子节点else{// 如果两个根节点都没有左子节点,只比较右子节点if (T1[root1].left == null && T2[root2].left == null){return Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点且数据相同,分别比较左右子节点else{if (T1[root1].left!= null && T2[root2].left!= null && T1[T1[root1].left].data == T2[T2[root2].left].data){return Isomorphism(T1[root1].left, T2[root2].left) && Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点但数据不同,交换左右子节点进行比较else{return Isomorphism(T1[root1].right, T2[root2].left) && Isomorphism(T1[root1].left, T2[root2].right);}}}}}
}
完整代码附上:
#include <stdio.h>
#include <string.h>// 定义最大树的大小
#define MAXTREE 10
// 定义空节点的标识
#define null -1// 树结构体
typedef struct tree
{char data; // 节点数据int left; // 左子节点索引int right; // 右子节点索引
} tree;// 全局数组用于存放两个树的节点信息
tree T1[MAXTREE], T2[MAXTREE];
// 检查数组,用于标记已访问过的节点
int check[MAXTREE];// 构建树的函数
int buildTree(tree* t);
// 判断两棵树是否同构的递归函数
int Isomorphism(int root1, int root2);int main()
{int r1, r2;// 分别构建两棵树r1 = buildTree(T1);r2 = buildTree(T2);// 如果两棵树同构,打印"Yes"if (Isomorphism(r1, r2)) {printf("Yes\n");}// 否则打印"No"else{printf("No\n");}return 0;
}// 构建树的函数实现
int buildTree(tree* t)
{int root = null, i;int n;char cleft, cright;// 输入节点数量scanf("%d", &n);// 如果节点数量大于零if (n > 0){// 初始化检查数组memset(check, 0, sizeof(check));// 遍历所有节点,输入节点数据及左右子节点索引for (i = 0; i < n; i++){// 忽略换行符getchar();// 输入当前节点的数据及左右子节点索引scanf("%c %c %c", &t[i].data, &cleft, &cright);// 处理左子节点if (cleft!= '-') {t[i].left = cleft - '0'; // 将字符形式的索引转为整数check[t[i].left] = 1; // 标记此子节点已被访问} else t[i].left = null; // 空节点// 处理右子节点if (cright!= '-') {t[i].right = cright - '0'; // 将字符形式的索引转为整数check[t[i].right] = 1; // 标记此子节点已被访问} else {t[i].right = null; // 空节点}}// 找到根节点for (i = 0; i < n; i++){//没有被访问过if (!check[i]) {break;}}// 返回根节点索引root = i;}// 返回根节点索引return root;
}// 判断两棵树是否同构的递归函数实现
int Isomorphism(int root1, int root2)
{// 如果两个根节点都为空,返回真if (root1 == null && root2 == null){return 1;}// 如果两个根节点不都为空else{// 如果只有一个根节点为空,返回假if (root1 == null && root2!= null || root1!= null && root2 == null){return 0;}else{// 如果两个根节点都不为空且数据不同,返回假if (T1[root1].data!= T2[root2].data){return 0;}// 如果两个根节点数据相同,继续比较子节点else{// 如果两个根节点都没有左子节点,只比较右子节点if (T1[root1].left == null && T2[root2].left == null){return Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点且数据相同,分别比较左右子节点else{if (T1[root1].left!= null && T2[root2].left!= null && T1[T1[root1].left].data == T2[T2[root2].left].data){return Isomorphism(T1[root1].left, T2[root2].left) && Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点但数据不同,交换左右子节点进行比较else{return Isomorphism(T1[root1].right, T2[root2].left) && Isomorphism(T1[root1].left, T2[root2].right);}}}}}
}
相关文章:
【PTA】4-2 树的同构【数据结构】
给定两棵树 T1 和 T2。如果 T1 可以通过若干次左右孩子互换就变成 T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。 图一…...
Node.js——fs模块-同步与异步
本文的分享到此结束,欢迎大家评论区一同讨论学习,下一篇继续分享Node.js的fs模块文件追加写入的学习。...
Java基于微信小程序的私家车位共享系统(附源码,文档)
博主介绍:✌stormjun、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&…...
vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?
一、前言 今天用 vue 官方脚手架创建工程,然后通过 vscode 打开项目发现,配置文件都被收缩在一起了。就像下面这样 这有点反直觉,他们应该是在同一层级下的,怎么会这样,有点好奇,但是打开资源管理查看&…...
PySpark任务提交
一般情况下,spark任务是用scala开发的,但是对于一些偏业务人员,或者是基于上手的来说python的API确实降低了开发前置条件的难度,首当其冲的就是能跳过Java和Scala需要的知识储备,但是在提交任务到集群的时候就很麻烦了…...
【果蔬购物商城管理与推荐系统】Python+Django网页界面+协同过滤推荐算法+管理系统网站
一、介绍 果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐…...
【大模型】海外生成式AI赛道的关键玩家:OpenAI、Anthropic之外还有谁?
引言 在生成式AI快速发展的今天,不同公司在各自领域发挥着独特作用。本文将从基础模型研发、开发工具框架、垂直领域应用三个维度,为读者梳理当前生成式AI技术领域的主要参与者,帮助开发者更好地把握技术发展方向。 一、基础模型研发公司 O…...
kubevirt cloud-init配置
https://cloudinit.readthedocs.io/en/latest/reference/examples.html (示例) https://cloudinit.readthedocs.io/en/latest/reference/faq.html (常见问题) https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html (检查user_data) https://clo…...
Oracle 大表添加索引的最佳方式
背景: 业务系统中现在经常存在上亿数据的大表,在这样的大表上新建索引,是一个较为耗时的操作,特别是在生产环境的系统中,添加不当,有可能造成业务表锁表,业务表长时间的停服势必会影响正常业务…...
速度了解云原生后端!!!
云原生后端是指基于云计算技术和理念构建的后端系统架构,旨在充分利用云计算的优势,实现快速部署、弹性扩展、高可用性和高效运维。以下是云原生后端的一些关键特点和技术: 容器化 容器化是云原生架构的核心之一,它使用容器技术&…...
云计算Openstack 虚拟机调度策略
OpenStack的虚拟机调度策略是一个复杂而灵活的系统,它主要由两种调度器实现:FilterScheduler(过滤调度器)和ChanceScheduler(随机调度器)。以下是对这两种调度器及其调度策略的详细解释: 一、F…...
在 macOS 上添加 hosts 文件解析的步骤
步骤 1: 打开 hosts 文件 打开终端: 你可以通过 Spotlight 搜索(按 Cmd Space 并输入 Terminal)来打开终端。 使用文本编辑器打开 hosts 文件: 在终端中输入以下命令,使用 nano 文本编辑器打开 hosts 文件:…...
RHCE【防火墙】
目录 一、防火墙简介 二、iptables 实验一:搭建web服务,设置任何人能够通过80端口访问。 实验二:禁止所有人ssh远程登录该服务器 实验三:禁止某个主机地址ssh远程登录该服务器,允许该主机访问服务器的web服务。服…...
基于springboot的招聘系统的设计与实现
摘 要 随着互联网时代的发展,传统的线下管理技术已无法高效、便捷的管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,国家在工作岗位要求不断提高的前提下,招聘系统建设也逐渐进入了信息化时代。…...
长度最小的子数组(滑动窗口)
给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 示例 1: 输入…...
构建灵活、高效的HTTP/1.1应用:探索h11库
文章目录 构建灵活、高效的HTTP/1.1应用:探索h11库背景这个库是什么?如何安装这个库?库函数使用方法使用场景常见的Bug及解决方案总结 构建灵活、高效的HTTP/1.1应用:探索h11库 背景 在现代网络应用中,HTTP协议是基础…...
大学英语救星!GPT助你完美解答完型填空和阅读理解
文章目录 零、前言一、再来十篇完型填空和阅读理解操作指导拍照:完型填空拍照:阅读理解 二、感受 零、前言 学习过程中,总是会遇到一些问题,但不好意思总是去麻烦问老师或同学 gpt可以帮社恐的你,解决学习问题&#…...
【linux】centos编译安装openssl1.1.1
文章目录 背景用途编译安装openssl1.1.1d测试centos的python2 ssl模块是否正常pyenv编译python3.10需要配置环境变量(必须)编译python前记得安装依赖 背景 首先, centos7 通过yum安装的openssl-devel包是1.0.2k的,这玩意儿太老了。我们选择从源码安装op…...
SpringBoot环境下的学生请假管理平台开发
2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...
基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化
上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化 在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
