当前位置: 首页 > news >正文

2024 网鼎杯 CTF --- Crypto wp

文章目录

      • 青龙组
        • Crypto1
        • Crypto2
      • 白虎组
        • Crypto1
        • Crypto2
      • 朱雀组
        • Crypto2
        • Crypto3
          • part1
          • part2
          • part3
          • part4

青龙组

Crypto1

题目:

from Crypto.Util.number import *
from secret import flagp = getPrime(512)
q = getPrime(512)
n = p * q
d = getPrime(299)
e = inverse(d,(p-1)*(q-1))
m = bytes_to_long(flag)
c = pow(m,e,n)
hint1 = p >> (512-70)
hint2 = q >> (512-70)print(f"n = {n}")
print(f"e = {e}")
print(f"c = {c}")
print(f"hint1 = {hint1}")
print(f"hint2 = {hint2}")n = 123789043095302886784777548580725867919630872720308267296330863659260260632444171595208750648710642616709290340791408935502415290984231140635423328808872594955139658822363033096014857287439409252367248420356169878044065798634016290690979979625051287064109800759113475629317869327100941592970373827299442569489
e = 112070481298571389221611833986644006256566240788306316765530852688390558290807060037831460397016038678699757261874520899143918664293504728402666398893964929840011110057060969775245481057773655679041350091817099143204028098431544760662690479779286160425059494739419234859710815966582837874194763305328789592245
c = 63662561509209168743977531923281040338804656992093161358503738280395090747786427812762995865224617853709000826994250614233562094619845247321880231488631212423212167167713869682181551433686816142488666533035193128298379649809096863305651271646535125466745409868274019550361728139482502448613835444108383177119hint1 = 897446442156802074692
hint2 = 1069442646630079275131

论文:367.pdf
在这里插入图片描述

高位boneh_durfee攻击
exp:

import time
time.clock = time.timedebug = Truestrict = Falsehelpful_only = True
dimension_min = 7 # 如果晶格达到该尺寸,则停止移除
# 显示有用矢量的统计数据
def helpful_vectors(BB, modulus):nothelpful = 0for ii in range(BB.dimensions()[0]):if BB[ii,ii] >= modulus:nothelpful += 1# 显示带有 0 和 X 的矩阵
def matrix_overview(BB, bound):for ii in range(BB.dimensions()[0]):a = ('%02d ' % ii)for jj in range(BB.dimensions()[1]):a += '0' if BB[ii,jj] == 0 else 'X'if BB.dimensions()[0] < 60: a += ' 'if BB[ii, ii] >= bound:a += '~'#print (a)# 尝试删除无用的向量
# 从当前 = n-1(最后一个向量)开始
def remove_unhelpful(BB, monomials, bound, current):# 我们从当前 = n-1(最后一个向量)开始if current == -1 or BB.dimensions()[0] <= dimension_min:return BB# 开始从后面检查for ii in range(current, -1, -1):#  如果它没有用if BB[ii, ii] >= bound:affected_vectors = 0affected_vector_index = 0# 让我们检查它是否影响其他向量for jj in range(ii + 1, BB.dimensions()[0]):# 如果另一个向量受到影响:# 我们增加计数if BB[jj, ii] != 0:affected_vectors += 1affected_vector_index = jj# 等级:0# 如果没有其他载体最终受到影响# 我们删除它if affected_vectors == 0:#print ("* removing unhelpful vector", ii)BB = BB.delete_columns([ii])BB = BB.delete_rows([ii])monomials.pop(ii)BB = remove_unhelpful(BB, monomials, bound, ii-1)return BB# 等级:1#如果只有一个受到影响,我们会检查# 如果它正在影响别的向量elif affected_vectors == 1:affected_deeper = Truefor kk in range(affected_vector_index + 1, BB.dimensions()[0]):# 如果它影响哪怕一个向量# 我们放弃这个if BB[kk, affected_vector_index] != 0:affected_deeper = False# 如果没有其他向量受到影响,则将其删除,并且# 这个有用的向量不够有用#与我们无用的相比if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):#print ("* removing unhelpful vectors", ii, "and", affected_vector_index)BB = BB.delete_columns([affected_vector_index, ii])BB = BB.delete_rows([affected_vector_index, ii])monomials.pop(affected_vector_index)monomials.pop(ii)BB = remove_unhelpful(BB, monomials, bound, ii-1)return BB# nothing happenedreturn BB""" 
Returns:
* 0,0   if it fails
* -1,-1 如果 "strict=true",并且行列式不受约束
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):"""Boneh and Durfee revisited by Herrmann and May在以下情况下找到解决方案:
* d < N^delta
* |x|< e^delta
* |y|< e^0.5
每当 delta < 1 - sqrt(2)/2 ~ 0.292"""# substitution (Herrman and May)PR.<u, x, y> = PolynomialRing(ZZ)   #多项式环Q = PR.quotient(x*y + 1 - u)        #  u = xy + 1polZ = Q(pol).lift()UU = XX*YY + 1# x-移位gg = []for kk in range(mm + 1):for ii in range(mm - kk + 1):xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kkgg.append(xshift)gg.sort()# 单项式 x 移位列表monomials = []for polynomial in gg:for monomial in polynomial.monomials(): #对于多项式中的单项式。单项式():if monomial not in monomials:  # 如果单项不在单项中monomials.append(monomial)monomials.sort()# y-移位for jj in range(1, tt + 1):for kk in range(floor(mm/tt) * jj, mm + 1):yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)yshift = Q(yshift).lift()gg.append(yshift) # substitution# 单项式 y 移位列表for jj in range(1, tt + 1):for kk in range(floor(mm/tt) * jj, mm + 1):monomials.append(u^kk * y^jj)# 构造格 Bnn = len(monomials)BB = Matrix(ZZ, nn)for ii in range(nn):BB[ii, 0] = gg[ii](0, 0, 0)for jj in range(1, ii + 1):if monomials[jj] in gg[ii].monomials():BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)#约化格的原型if helpful_only:#  #自动删除BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)# 重置维度nn = BB.dimensions()[0]if nn == 0:print ("failure")return 0,0# 检查向量是否有帮助if debug:helpful_vectors(BB, modulus^mm)# 检查行列式是否正确界定det = BB.det()bound = modulus^(mm*nn)if det >= bound:print ("We do not have det < bound. Solutions might not be found.")print ("Try with highers m and t.")if debug:diff = (log(det) - log(bound)) / log(2)print ("size det(L) - size e^(m*n) = ", floor(diff))if strict:return -1, -1else:print ("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")# display the lattice basisif debug:matrix_overview(BB, modulus^mm)# LLLif debug:print ("optimizing basis of the lattice via LLL, this can take a long time")#BB = BB.BKZ(block_size=25)BB = BB.LLL()if debug:print ("LLL is done!")# 替换向量 i 和 j ->多项式 1 和 2if debug:print ("在格中寻找线性无关向量")found_polynomials = Falsefor pol1_idx in range(nn - 1):for pol2_idx in range(pol1_idx + 1, nn):# 对于i and j, 构造两个多项式PR.<w,z> = PolynomialRing(ZZ)pol1 = pol2 = 0for jj in range(nn):pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)# 结果PR.<q> = PolynomialRing(ZZ)rr = pol1.resultant(pol2)if rr.is_zero() or rr.monomials() == [1]:continueelse:print ("found them, using vectors", pol1_idx, "and", pol2_idx)found_polynomials = Truebreakif found_polynomials:breakif not found_polynomials:print ("no independant vectors could be found. This should very rarely happen...")return 0, 0rr = rr(q, q)# solutionssoly = rr.roots()if len(soly) == 0:print ("Your prediction (delta) is too small")return 0, 0soly = soly[0][0]ss = pol1(q, soly)solx = ss.roots()[0][0]return solx, solydef example():############################################# 随机生成数据###########################################start_time =time.perf_counterstart =time.clock()size=512length_N = 2*size;ss=0s=70;M=1   # the number of experimentsdelta = 299/1024# p =  random_prime(2^512,2^511)for i in range(M):
#         p =  random_prime(2^size,None,2^(size-1))
#         q =  random_prime(2^size,None,2^(size-1))
#         if(p<q):
#             temp=p
#             p=q
#             q=tempN = 123789043095302886784777548580725867919630872720308267296330863659260260632444171595208750648710642616709290340791408935502415290984231140635423328808872594955139658822363033096014857287439409252367248420356169878044065798634016290690979979625051287064109800759113475629317869327100941592970373827299442569489e = 112070481298571389221611833986644006256566240788306316765530852688390558290807060037831460397016038678699757261874520899143918664293504728402666398893964929840011110057060969775245481057773655679041350091817099143204028098431544760662690479779286160425059494739419234859710815966582837874194763305328789592245c = 63662561509209168743977531923281040338804656992093161358503738280395090747786427812762995865224617853709000826994250614233562094619845247321880231488631212423212167167713869682181551433686816142488666533035193128298379649809096863305651271646535125466745409868274019550361728139482502448613835444108383177119hint1 = 897446442156802074692  # p高位hint2 = 1069442646630079275131  # q高位
#         print ("p真实高",s,"比特:", int(p/2^(512-s)))
#         print ("q真实高",s,"比特:", int(q/2^(512-s)))#         N = p*q;# 解密指数d的指数( 最大0.292)m = 7   # 格大小(越大越好/越慢)t = round(((1-2*delta) * m))  # 来自 Herrmann 和 May 的优化X = floor(N^delta)  # Y = floor(N^(1/2)/2^s)    # 如果 p、 q 大小相同,则正确for l in range(int(hint1),int(hint1)+1):print('\n\n\n l=',l)pM=l;p0=pM*2^(size-s)+2^(size-s)-1;q0=N/p0;qM=int(q0/2^(size-s))A = N + 1-pM*2^(size-s)-qM*2^(size-s);#A = N+1P.<x,y> = PolynomialRing(ZZ)pol = 1 + x * (A + y)  #构建的方程# Checking bounds#if debug:#print ("=== 核对数据 ===")#print ("* delta:", delta)#print ("* delta < 0.292", delta < 0.292)#print ("* size of e:", ceil(log(e)/log(2)))  # e的bit数# print ("* size of N:", len(bin(N)))          # N的bit数#print ("* size of N:", ceil(log(N)/log(2)))  # N的bit数#print ("* m:", m, ", t:", t)# boneh_durfeeif debug:##print ("=== running algorithm ===")start_time = time.time()solx, soly = boneh_durfee(pol, e, m, t, X, Y)if solx > 0:#print ("=== solution found ===")if False:print ("x:", solx)print ("y:", soly)d_sol = int(pol(solx, soly) / e)ss=ss+1print ("=== solution found ===")print ("p的高比特为:",l)print ("q的高比特为:",qM)print ("d=",d_sol) if debug:print("=== %s seconds ===" % (time.time() - start_time))#breakprint("ss=",ss)#end=time.process_timeend=time.clock()print('Running time: %s Seconds'%(end-start))
if __name__ == "__main__":example()  

解出d

d = 815288165251971990144240125719456676622201418787728487985993940108011619486967079496288981

接着RSA解密

n = 123789043095302886784777548580725867919630872720308267296330863659260260632444171595208750648710642616709290340791408935502415290984231140635423328808872594955139658822363033096014857287439409252367248420356169878044065798634016290690979979625051287064109800759113475629317869327100941592970373827299442569489
e = 112070481298571389221611833986644006256566240788306316765530852688390558290807060037831460397016038678699757261874520899143918664293504728402666398893964929840011110057060969775245481057773655679041350091817099143204028098431544760662690479779286160425059494739419234859710815966582837874194763305328789592245
c = 63662561509209168743977531923281040338804656992093161358503738280395090747786427812762995865224617853709000826994250614233562094619845247321880231488631212423212167167713869682181551433686816142488666533035193128298379649809096863305651271646535125466745409868274019550361728139482502448613835444108383177119
d = 815288165251971990144240125719456676622201418787728487985993940108011619486967079496288981
m = pow(c,d,n)
flag = bytes.fromhex(hex(m)[2:])
print(flag)
Crypto2

题目:

# coding: utf-8
#!/usr/bin/env python2import gmpy2
import random
import binascii
from hashlib import sha256
from sympy import nextprime
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from Crypto.Util.number import long_to_bytes
from FLAG import flag
#flag = 'wdflag{123}'def victory_encrypt(plaintext, key):key = key.upper()key_length = len(key)plaintext = plaintext.upper()ciphertext = ''for i, char in enumerate(plaintext):if char.isalpha():shift = ord(key[i % key_length]) - ord('A')encrypted_char = chr((ord(char) - ord('A') + shift) % 26 + ord('A'))ciphertext += encrypted_charelse:ciphertext += charreturn ciphertextvictory_key = "WANGDINGCUP"
victory_encrypted_flag = victory_encrypt(flag, victory_key)p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
a = 0
b = 7
xG = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
yG = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
G = (xG, yG)
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
h = 1
zero = (0,0)dA = nextprime(random.randint(0, n))if dA > n:print("warning!!")def addition(t1, t2):if t1 == zero:return t2if t2 == zero:return t2(m1, n1) = t1(m2, n2) = t2if m1 == m2:if n1 == 0 or n1 != n2:return zeroelse:k = (3 * m1 * m1 + a) % p * gmpy2.invert(2 * n1 , p) % pelse:k = (n2 - n1 + p) % p * gmpy2.invert((m2 - m1 + p) % p, p) % pm3 = (k * k % p - m1 - m2 + p * 2) % pn3 = (k * (m1 - m3) % p - n1 + p) % preturn (int(m3),int(n3))def multiplication(x, k):ans = zerot = 1while(t <= k):if (k &t )>0:ans = addition(ans, x)x = addition(x, x)t <<= 1return ansdef getrs(z, k):(xp, yp) = Pr = xps = (z + r * dA % n) % n * gmpy2.invert(k, n) % nreturn r,sz1 = random.randint(0, p)
z2 = random.randint(0, p)
k = random.randint(0, n)
P = multiplication(G, k)
hA = multiplication(G, dA)
r1, s1 = getrs(z1, k)
r2, s2 = getrs(z2, k)print("r1 = {}".format(r1))
print("r2 = {}".format(r2))
print("s1 = {}".format(s1))
print("s2 = {}".format(s2))
print("z1 = {}".format(z1))
print("z2 = {}".format(z2))key = sha256(long_to_bytes(dA)).digest()
cipher = AES.new(key, AES.MODE_CBC)
iv = cipher.iv
encrypted_flag = cipher.encrypt(pad(victory_encrypted_flag.encode(), AES.block_size))
encrypted_flag_hex = binascii.hexlify(iv + encrypted_flag).decode('utf-8')print("Encrypted flag (AES in CBC mode, hex):", encrypted_flag_hex)# output
# r1 = 66378485426889535028763915423685212583706810153195012097516816885575964878246
# r2 = 66378485426889535028763915423685212583706810153195012097516816885575964878246
# s1 = 73636354334739290806716081380360143742414582638332132893041295586890856253300
# s2 = 64320109990895398581134015047131652648423777800538748939578192006599226954034
# z1 = 35311306706233977395060423051262119784421232920823462737043282589337379493964
# z2 = 101807556569342254666094290602497540565936025601030395061064067677254735341454
# ('Encrypted flag (AES in CBC mode, hex):', u'3cdbe372c9bc279e816336ad69b8247f4ec05647a7e97285dd64136875004b638b77191fe9bef702cb873ee93dbe376c050d0c721b69f17f539cff83372cc37b')

ECDSA 共k攻击求dA
已知
s 1 = ( z 1 + r ∗ d A ) m o d n ∗ k − 1 m o d n s_1 = (z_1+r*dA) \space mod \space n *k^{-1} \space mod \space n s1=(z1+rdA) mod nk1 mod n
s 2 = ( z 2 + r ∗ d A ) m o d n ∗ k − 1 m o d n s_2 = (z_2+r*dA) \space mod \space n *k^{-1} \space mod \space n s2=(z2+rdA) mod nk1 mod n
两边同时乘上k
s 1 k = ( z 1 + r ∗ d A ) m o d n s_1k = (z_1+r*dA) \space mod \space n s1k=(z1+rdA) mod n
s 2 k = ( z 2 + r ∗ d A ) m o d n s_2k = (z_2+r*dA) \space mod \space n s2k=(z2+rdA) mod n
两式相减,得到k
k = ( s 2 − s 1 ) − 1 ( z 2 − z 1 ) m o d n k = (s_2-s_1)^{-1}(z_2-z_1) \space mod \space n k=(s2s1)1(z2z1) mod n
带入式子1,即可计算出dA
d A = ( s 1 k − z 1 ) × k − 1 m o d n dA = (s_1k-z_1)\times k^{-1} \space mod \space n dA=(s1kz1)×k1 mod n
之后直接计算出key和iv解AES密文即可
然后根据加密代码逻辑还原明文

import gmpy2
from hashlib import sha256
from Crypto.Util.number import *
from Crypto.Cipher import AES
import binasciidef victory_decrypt(ciphertext, key):key = key.upper()key_length = len(key)plaintext = ''for i, char in enumerate(ciphertext):if char.isalpha():shift = ord(key[i % key_length]) - ord('A')decrypted_char = chr((ord(char) - ord('A') - shift + 26) % 26 + ord('A'))plaintext += decrypted_charelse:plaintext += charreturn plaintextr1 = 66378485426889535028763915423685212583706810153195012097516816885575964878246
r2 = 66378485426889535028763915423685212583706810153195012097516816885575964878246
s1 = 73636354334739290806716081380360143742414582638332132893041295586890856253300
s2 = 64320109990895398581134015047131652648423777800538748939578192006599226954034
z1 = 35311306706233977395060423051262119784421232920823462737043282589337379493964
z2 = 101807556569342254666094290602497540565936025601030395061064067677254735341454
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
c = '3cdbe372c9bc279e816336ad69b8247f4ec05647a7e97285dd64136875004b638b77191fe9bef702cb873ee93dbe376c050d0c721b69f17f539cff83372cc37b'
k = (z2-z1)*gmpy2.invert(s2-s1,n) %n
dA = (s1*k-z1)*gmpy2.invert(r1,n)%n
key = sha256(long_to_bytes(dA)).digest()
iv = binascii.unhexlify(c[:32])
enc = binascii.unhexlify(c[32:])
cipher = AES.new(key, AES.MODE_CBC,iv)
flag = cipher.decrypt(enc)
print(flag)
#SDSRDO{34697E430N6H6URW68849Q8HWT81039J}
ciphertext = "SDSRDO{34697E430N6H6URW68849Q8HWT81039J}"
victory_key = "WANGDINGCUP"
decrypted_flag = victory_decrypt(ciphertext, victory_key)print("Decrypted flag:", decrypted_flag)
#WDFLAG{34697E430F6B6ACA68849D8FCE81039B}

白虎组

Crypto1

先ddl了,有时间再补上

Crypto2

题目:

from Crypto.Util.number import getPrime, isPrime, GCD, inversenbits = 2048
gbits = 1000
g = getPrime(int(gbits))
while True:a = getPrime(int(nbits*0.5)-gbits)p = 2*g*a + 1if isPrime(p):breakwhile True:b = getPrime(int(nbits*0.5)-gbits)q = 2*g*b + 1if p!=q and isPrime(q):break
N = p*q
e = 65537def str2int(s):return int(s.encode('latin-1').hex(),16)def int2str(i):tmp=hex(i)[2:]if len(tmp)%2==1:tmp='0'+tmpreturn bytes.fromhex(tmp).decode('latin-1')with open('pubkey.txt','w') as f:f.write(str(e)+'\n')f.write(str(N)+'\n')with open('flag.txt') as f:plain = str2int(f.read())c = pow(plain,e,N)
with open('cipher.txt','wb') as f:f.write(int2str(c).encode('latin-1'))

分析代码,我们可以发现p和q的生成都存在一个共同的因子g,约为1000bit
∵ p = 2 g a + 1 , q = 2 g b + 1 \because p = 2ga+1,q = 2gb+1 p=2ga+1,q=2gb+1
⇒ g = g c d ( p − 1 , q − 1 ) \Rightarrow g = gcd(p-1,q-1) g=gcd(p1,q1)
所以我们可以使用Pollard’s rho来分解n,从而求得p和q
最后再把密文处理成整数型,然后计算出phi,d解密即可获得flag
exp:

import gmpy2
from Crypto.Util.number import *def f(x, n):return (pow(x, n - 1, n) + 3) % ndef rho(n):i = 1while True:a = getRandomRange(2, n)b = f(a, n)j = 1while True:p = GCD(abs(a - b), n)print('{} in {} circle'.format(j, i))if p == n:breakelif p > 1:return (p, n // p)else:a = f(a, n)b = f(f(b, n), n)j += 1i += 1#将密文转换整型
with open('cipher.txt', 'rb') as f:c_bytes = f.read()  # 读取字节内容c_hex = c_bytes.hex()  # 将字节转换为十六进制字符串c = int(c_hex, 16)  # 将十六进制字符串转换为整数e = 65537
n = 49025724928152491719950645039355675823887062840095001672970308684156817293484070166684235178364916522473822184239221170514602692903302575847326054102901449806271709230774063675539139201327878971370342483682454617270705142999317092151456200639975738970405158598235961567646064089356496022247689989925574384915789399433283855087561428970245448888799812611301566886173165074558800757040196846800189738355799057422298556992606146766063202605288257843684190291545600282197788724944382475099313284546776350595539129553760118549158103804149179701853798084612143809757187033897573787135477889183344944579834942896249251191453
#Pollard’s rho分解n,
#p,q = rho(n)
p = 181081097501198023069853833182353184261284123229534078254107942099502325869566163846505417960576038861954213847321685798395883194037860319430010178354074600519049325312842897561278830450748961589667396822373094094674865532726953310816962745801088563041800719074771895743022649725941252134035150899684475275107
q = 270739053411293468044358005572326880715866131246316305975150551797771999927260913691624449594733673350641598358977228099278925982221096409496197961213452575581038864123668037331549492912118266914139408344450017736857756347795681452284667629499583154669046006953194443040693208729068117415444168170452989294079phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = pow(c,d,n)
flag = long_to_bytes(m)
print(flag)

朱雀组

Crypto2

题目给了密文c,n以及p,其中p的高256bit已知
显然这是一个p高位泄露的题型,但是卡界了。
这一类题,我在2023 LitCTF 的baby_xor一题中出过一样的考点,详情移步下方链接,这里就不细讲了。
2023 LitCTF — Crypto wp

from tqdm import *
n = 0x00b8cb1cca99b6ac41876c18845732a5cbfc875df346ee9002ce608508b5fcf6b60a5ac7722a2d64ef74e1443a338e70a73e63a303f3ac9adf198595699f6e9f30c009d219c7d98c4ec84203610834029c79567efc08f66b4bc3f564bfb571546a06b7e48fb35bb9ccea9a2cd44349f829242078dfa64d525927bfd55d099c024fph = 0xe700568ff506bd5892af92592125e06cbe9bd45dfeafe931a333c13463023d4f0000000000000000000000000000000000000000000000000000000000000000
pbits = 512
p_high = ph>>256
for i in trange(2**8):p4 = p_high<<8p4 = p4 + ikbits = pbits - p4.nbits()p4 = p4 << kbitsPR.<x> = PolynomialRing(Zmod(n))f = x + p4roots = f.small_roots(X=2^kbits, beta=0.4, epsilon=0.01)if roots:        p = p4+int(roots[0]) if n%p==0:print(i,p)break

爆破得到

i = 194 
p = 12098520864598198757294135341465388062087431109285224283440314414683283061468500249596026217234382854875647811812632201834942205849073893715844547051090363
from Crypto.Util.number import *
import gmpy2
import libnumf = open("flag.enc","rb").read()
c = bytes_to_long(f)
p = 12098520864598198757294135341465388062087431109285224283440314414683283061468500249596026217234382854875647811812632201834942205849073893715844547051090363
n = 0x00b8cb1cca99b6ac41876c18845732a5cbfc875df346ee9002ce608508b5fcf6b60a5ac7722a2d64ef74e1443a338e70a73e63a303f3ac9adf198595699f6e9f30c009d219c7d98c4ec84203610834029c79567efc08f66b4bc3f564bfb571546a06b7e48fb35bb9ccea9a2cd44349f829242078dfa64d525927bfd55d099c024f
e = 65537
q = n//p
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = pow(c,d,n)
flag = long_to_bytes(m)
print(flag)

之后计算出q = n//p,把密文变成数字型,再RSA解密即可得到flag

Crypto3
part1

n 1 ≈ p 1 × 2024 p 1 ≈ 2024 p 1 2 n_1 \approx p_1 \times 2024p_1 \approx 2024p_1^{2} n1p1×2024p12024p12
整除2024,然后对n1开方即可得到p1,进而得到q1

n1 = 
p1 = gmpy2.iroot(n1//2024,2)[0]
q1 = n1//p1

得到p1和q1

p1 = 146187607535300384587509957494226602879910697731111793338231366571998962914635615996598727004205169961576448628561413122161261394771744901435074146079222198287010135623393031759366562782057113205707175142954551779767710913840908209285742147746099427389400973759220801645310208401376788865791190217328962123279
q1 = 295883717651447978405120153968314644228939252207770269716580285941725900939222486777115823456511264002230732024208300159254393063018011680504590071664345729332908514501747496280957923070883597128351322489340012802249846889613998215594342107038105241036147570888662902530107861804386620664361368999873819337516721
part2

已知
n 2 = p 2 ∗ q 2 , n 22 = p 2 2 + q 2 2 n_2 = p_2*q_2,n_{22} = p_2^{2}+q_2^{2} n2=p2q2,n22=p22+q22
那么我们直接构建方程组解方程即可

n2 = 
n22 = 
p2,q2 = Ints('p2 q2')
s = Solver()
s.add(p2*q2==n2)
s.add(p2**2+q2**2==n22)
if s.check()==sat:print(s.model())

得到p2和q2

p2 = 133064204383114442564887327191574256650055020929830824588577417753167292659660059589564610129957808064002805580421156153609277092389753135192904997169182787255213644860856072991606212800442053226675120936710208060680648681274616282517421189570805017586256581334157425386374483509501090965717646720700424863423
q2 = 161350628589676557525881716966340935717969334783533837289612088856244362686139907887162014592790132128414148723412888028361068777482425667132948875411222080236173967775667519908708279765880512473014384298105752518090429868307024159426520644435015258039304108930727310884096853455754839248318020906028016894579
part3

根据p3和q3得生成代码,可知
p 3 + q 3 = 2 ( n 3 + 1 ) p_3+q_3 = 2(\sqrt{n_3}+1) p3+q3=2(n3 +1)
再联合
n 3 = p 3 q 3 n_3 = p_3q_3 n3=p3q3
可以构造方程组计算出p3和q3

n3 = 
tmp = gmpy2.iroot(n3,2)[0]
p3,q3 = Ints('p3 q3')
s = Solver()
s.add(p3*q3==n3)
s.add(p3+q3==2*tmp+2)
if s.check()==sat:print(s.model())

得到p3和q3

p3 = 122919460677181447255662000442101333281019894158297462412806821518657755917099521145678690717375396316626833583612356812214587401412448220563982839146665862717678495178437386577882720343715419646347453965273307650714361987001939787363067549306301977112348400269518912107383153989960205330328806948574142432881
q3 = 122919460677181447255662000442101333281019894158297462412806821518657755917099521145678690717375396316626833583612356812214587401412448220563982839146665862719627439871738815429215471546402837328038925028763750154507765739783853121032116043651820874648359779165148305098515735172075366847764584719616506196289
part4

已知
m 1 = p 1 m 2 + p 2 m + p 3 m_1 = p_1m^2+p_2m+p_3 m1=p1m2+p2m+p3
m 2 = q 1 m 2 + q 2 m + q 3 m_2 = q_1m^2+q_2m+q_3 m2=q1m2+q2m+q3
c 1 = m 1 e m o d n c_1 = m_1^e \space mod \space n c1=m1e mod n
c 2 = m 2 e m o d n c_2 = m_2^e \space mod \space n c2=m2e mod n
一眼顶针 Franklin-Reiter攻击,但是e = 2999,有点大,不太好多项式GCD,所以我们使用half gcd来加速多项式得gcd

#sage
from Crypto.Util.number import *
import sysdef HGCD(a, b):if 2 * b.degree() <= a.degree() or a.degree() == 1:return 1, 0, 0, 1m = a.degree() // 2a_top, a_bot = a.quo_rem(x^m)b_top, b_bot = b.quo_rem(x^m)R00, R01, R10, R11 = HGCD(a_top, b_top)c = R00 * a + R01 * bd = R10 * a + R11 * bq, e = c.quo_rem(d)d_top, d_bot = d.quo_rem(x^(m // 2))e_top, e_bot = e.quo_rem(x^(m // 2))S00, S01, S10, S11 = HGCD(d_top, e_top)RET00 = S01 * R00 + (S00 - q * S01) * R10RET01 = S01 * R01 + (S00 - q * S01) * R11RET10 = S11 * R00 + (S10 - q * S11) * R10RET11 = S11 * R01 + (S10 - q * S11) * R11return RET00, RET01, RET10, RET11def GCD(a, b):q, r = a.quo_rem(b)if r == 0:return bR00, R01, R10, R11 = HGCD(a, b)c = R00 * a + R01 * bd = R10 * a + R11 * bif d == 0:return c.monic()q, r = c.quo_rem(d)if r == 0:return dreturn GCD(d, r)sys.setrecursionlimit(500000)p1 = 146187607535300384587509957494226602879910697731111793338231366571998962914635615996598727004205169961576448628561413122161261394771744901435074146079222198287010135623393031759366562782057113205707175142954551779767710913840908209285742147746099427389400973759220801645310208401376788865791190217328962123279
q1 = 295883717651447978405120153968314644228939252207770269716580285941725900939222486777115823456511264002230732024208300159254393063018011680504590071664345729332908514501747496280957923070883597128351322489340012802249846889613998215594342107038105241036147570888662902530107861804386620664361368999873819337516721p2 = 133064204383114442564887327191574256650055020929830824588577417753167292659660059589564610129957808064002805580421156153609277092389753135192904997169182787255213644860856072991606212800442053226675120936710208060680648681274616282517421189570805017586256581334157425386374483509501090965717646720700424863423
q2 = 161350628589676557525881716966340935717969334783533837289612088856244362686139907887162014592790132128414148723412888028361068777482425667132948875411222080236173967775667519908708279765880512473014384298105752518090429868307024159426520644435015258039304108930727310884096853455754839248318020906028016894579p3 = 122919460677181447255662000442101333281019894158297462412806821518657755917099521145678690717375396316626833583612356812214587401412448220563982839146665862717678495178437386577882720343715419646347453965273307650714361987001939787363067549306301977112348400269518912107383153989960205330328806948574142432881
q3 = 122919460677181447255662000442101333281019894158297462412806821518657755917099521145678690717375396316626833583612356812214587401412448220563982839146665862719627439871738815429215471546402837328038925028763750154507765739783853121032116043651820874648359779165148305098515735172075366847764584719616506196289
e = 2999
n = 16384707752002961811357426356040804358820450429112719059482965460688633224199445850016434753713403979835193345762008018698844949530549502743281731789334994428312464772130516824285978243651287411553116255652677650004040824347186268439788928865418368468897627214552572846541839629323949068937120798767586917684764944219031287061253819651989184659516095370231858355076296906499453937821927440892978892852470311395853382511321806654834173438462402181182706548632711364029421502619027705821496435350762046222825598323497861393301677598992958820184003364763320507041485736186970914568690758845870075203051617037883827279119
c1 = 11382473352009511791762101735529507838446758824791351775250810654314066423650685628073502579664186057184344713574429940611514864513995383801386486394825452589218688059897458368223518637647179221771655104137667329953446341815527699304599435283634443556038985090968474934734321344125280569467142049038929368549733232047316780077686016318662303350081357699377969335914292631398295061602601940464649624118295616080162917211435856653333110858004250959483891522407923876955812205685375843940874486371994485161526059198019014530740524036481557433830304867422828002361446861419824025752025995296741718962141953713234949894732
c2 = 13291355062242181017235433629558689027068114611650872691659197232933062720760260933280099178334615566562244698391494264051061145257215694115131167336658805533954362024110598093368016089512260336234014588390607552801658614571912470713860293915607463462319165043506295500174873235810829299741016973929360670488678562024980338443636210602228872744449850339238513161642644630785241443001404597604581629303749287855365022218361488602768556292856610619067231689100946362621816109192111615866980116556776737918323907474176583284350758109722993772794866722135312051956704194889790127430725508449097365193657563726357277350509R.<x> = PolynomialRing(Zmod(n))
f = (p1 * x * x + p2 * x + p3)^e - c1
g = (q1 * x * x + q2 * x + q3)^e - c2
res = GCD(f,g)
m = -res.monic().coefficients()[0]
flag = long_to_bytes(int(m))
print(flag)

【许多的故事,大大小小的,末尾就两个字,“还好”。而”还好“的注解,大概就是”希望“。】

相关文章:

2024 网鼎杯 CTF --- Crypto wp

文章目录 青龙组Crypto1Crypto2 白虎组Crypto1Crypto2 朱雀组Crypto2Crypto3part1part2part3part4 青龙组 Crypto1 题目&#xff1a; from Crypto.Util.number import * from secret import flagp getPrime(512) q getPrime(512) n p * q d getPrime(299) e inverse(d,…...

深度学习基础知识-损失函数

目录 1. 均方误差&#xff08;Mean Squared Error, MSE&#xff09; 2. 平均绝对误差&#xff08;Mean Absolute Error, MAE&#xff09; 3. Huber 损失 4. 交叉熵损失&#xff08;Cross-Entropy Loss&#xff09; 5. KL 散度&#xff08;Kullback-Leibler Divergence&…...

《逆向记录》

这里写自定义目录标题 1.什么是vmp加密VMP加密的工作原理VMP加密的应用场景和优缺点实际应用案例 2.什么是ast混淆3.魔改算法总结 1.什么是vmp加密 ‌VMP加密&#xff08;Virtual Machine Protection&#xff09;‌是一种软件保护技术&#xff0c;旨在通过虚拟化和加密技术来保…...

chatgpt3.5权重参数有多少MB;llama7B权重参数有多少MB

目录 chatgpt3.5权重参数有多少MB llama7B权重参数有多少MB chatgpt3.5权重参数有多少MB 关于ChatGPT 3.5的权重参数占用的存储空间大小,虽然直接给出具体的MB数值可能较为困难(因为这取决于多种因素,如参数表示的精度、是否进行了压缩等),但可以根据其参数量来估算一个…...

ST IoT Wireless 物联网与无线技术 研讨会

一、研讨会背景与目的 ◆ 意法半导体致力于提供可靠且经济实惠的无线连接解决方案,包含Wireless NFC Security & Esim等产品。 ◆ 将智能物体连接到互联网和云&#xff0c;或者从更广泛的意义上说&#xff0c;连接到物联网&#xff08;IoT&#xff09;。 ◆ 远程监控、配…...

PHP实现雪花算法生成唯一ID

引言 雪花算法是Twitter开源的分布式ID生成算法&#xff0c;可以产生64位的ID。其中第一位是固定的正数标识&#xff0c;41位用于存储时间戳&#xff0c;剩下的为机器ID和序列号。通过时间戳、机器ID和序列号的组合&#xff0c;确保每个ID都是唯一的。 PHP代码 1、定义雪花算…...

APP的设置页面,应该怎样尽可能减少用户的输入操作呢

一、引言 在当今数字化时代&#xff0c;移动应用程序&#xff08;APP&#xff09;已经成为人们生活中不可或缺的一部分。无论是社交娱乐、工作学习还是日常生活&#xff0c;我们都离不开各种 APP 的帮助。而 APP 的设置页面作为用户调整应用参数、个性化定制功能的重要入口&am…...

Node.js:内置模块

Node.js&#xff1a;内置模块 Node.jsfs模块读取文件写入文件__dirname path模块路径拼接文件名解析 http模块创建服务 Node.js 传统的JavaScript是运行在浏览器的&#xff0c;浏览器就是其运行环境。 浏览器提供了JavaScript的API&#xff0c;以及解析JavaScript的解析引擎&a…...

3. keil + vscode 进行stm32协同开发

1. 为什么使用vscode 主要还是界面友好&#xff0c;使用习惯问题&#xff0c;vscode 从前端&#xff0c;js, c/c, qt, 仓颉&#xff0c;rust都有很好插件的支持&#xff0c;并且有romote&#xff0c; wsl 等很多插件可以提高效率&#xff0c; 唯一的问题就是要使用插件进行环境…...

React 组件生命周期与 Hooks 简明指南

文章目录 一、类组件的生命周期方法1. 挂载阶段2. 更新阶段3. 卸载阶段 二、函数组件中的 Hooks1. useState2. useEffect3. useContext4. useReducer 结论 好的&#xff0c;我们来详细讲解一下 React 类组件的生命周期方法和函数组件中的钩子&#xff08;hooks&#xff09;。 …...

【springcloud】gateway网关的作用

目录 1. 说明2. 路由转发3. 负载均衡4. 安全认证与授权5. 熔断与降级6. 请求限流7. 监控与日志8. 过滤器功能 1. 说明 1.在Spring Cloud中&#xff0c;Gateway网关扮演着至关重要的角色。2.基于Spring Framework 5、Spring Boot和Project Reactor构建的API网关&#xff0c;专为…...

「C/C++」C++11 之<thread>多线程编程

✨博客主页何曾参静谧的博客📌文章专栏「C/C++」C/C++程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid函数说明目…...

HTML前端页面设计静态网站-仿百度

浅浅分享一下前端作业&#xff0c;大佬轻喷~ <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>百度&#xff08;伪&#xff09;</title><style>body {margin: 0;padding: 0;}.top-bar {dis…...

百度SEO是否还有用?福州百度SEO专家林汉文为你深度解析

大家好&#xff0c;我是林汉文&#xff0c;一名专注于百度SEO优化的专家&#xff0c;最近有很多人问我&#xff1a;百度SEO还有用吗&#xff1f;在如今快速变化的数字营销环境中&#xff0c;这确实是一个值得探讨的问题。今天&#xff0c;我就来为大家详细分析百度SEO的现状&am…...

数学建模学习(134):使用Python基于WISP的多准则决策分析

WISP算法技术性文章 1. 算法介绍 WISP(Weighted Independent Set Problem)是一种优化算法,主要用于解决图论中的加权独立集问题。加权独立集问题是一个经典的组合优化问题,涉及从一个图中选择一个独立的顶点集,使得所选顶点的总权重最大。这个问题在计算机科学、运筹学、…...

.net core NPOI以及NOPI mapper

我们在日常开发中对Excel的操作可能会比较频繁&#xff0c;好多功能都会涉及到Excel的操作。在.Net Core中大家可能使用Npoi比较多&#xff0c;这款软件功能也十分强大&#xff0c;而且接近原始编程。但是直接使用Npoi大部分时候我们可能都会自己封装一下&#xff0c;毕竟根据二…...

分布式锁(redisson,看门狗,主从一致性)

目录 分布式锁一&#xff1a;基本原理和实现方式二&#xff1a;分布式锁的实现1&#xff1a;分布式锁的误删问题2&#xff1a;解决误删问题 三&#xff1a;lua脚本解决多条命令原子性问题调用lua脚本 四&#xff1a;Redisson1&#xff1a;redisson入门2&#xff1a;redisson可重…...

openEuler 服务器Python自动化安装WEB服务器和文件上传服务(1)

一、系统准备 我们的服务器采用了 openEuler 22.03 (LTS-SP4) 的初始化服务器模式安装 二、安装步骤 &#xff08;一&#xff09;安装依赖库 在终端中运行以下命令确保系统安装了必要的依赖&#xff1a; sudo dnf install -y python3上述 Python 脚本中的依赖库会在运行 Py…...

【Python游戏开发】石头剪刀布游戏(附完整Python完整代码)

石头剪刀布游戏:Pygame实现 结果图前言核心函数思考步骤实现原理和公式代码实现结论结果图 前言 石头剪刀布是一种经典的猜拳游戏,简单易玩但却蕴含着一定的策略性。本文将介绍如何使用Python和Pygame库开发一个简单的石头剪刀布游戏,并探讨其中的核心功能实现和思考过程。 …...

ctfshow(94,95)--PHP特性--strpos函数

建议先学习intval函数相关内容 Web94 源代码&#xff1a; include("flag.php"); highlight_file(__FILE__); if(isset($_GET[num])){$num $_GET[num];if($num"4476"){die("no no no!");}if(preg_match("/[a-z]/i", $num)){die(&qu…...

C++ --- 多线程的使用

目录 一.什么是线程&#xff1f; 线程的特点&#xff1a; 线程的组成&#xff1a; 二.什么是进程&#xff1f; 进程的特点&#xff1a; 进程的组成&#xff1a; 三.线程与进程的关系&#xff1a; 四.C的Thread方法的使用&#xff1a; 1.创建线程&#xff1a; 2.join(…...

百度笔试(10.29)

判断s字符串是否可以通过添加某些字符变成t字符串&#xff0c;s是否是t的子序列 s input() n int(input()) st set() res [] for idx in range(n):t input()if t in st or len(t) < len(s):continuest.add(t)i,j 0,0while i < len(s) and j < len(t):if s[i] …...

数据库版本更新后,如何迁移数据?

数据库版本更新后迁移数据是一个需要谨慎处理的过程。以下是一般步骤和最佳实践&#xff1a; 1. **备份数据**&#xff1a; 在进行任何迁移之前&#xff0c;确保对现有数据库进行完整备份。这可以是物理备份&#xff08;如数据库文件的拷贝&#xff09;或逻辑备份&#xff…...

Chrome与火狐的安全功能全面评估

在当今数字化时代&#xff0c;网络安全已成为用户最为关注的问题之一。作为两款广受欢迎的浏览器&#xff0c;Chrome和火狐&#xff08;Firefox&#xff09;都提供了多种安全功能来保护用户的在线隐私和数据安全。本文将全面评估这两款浏览器的安全功能&#xff0c;帮助用户更好…...

微服务设计模式 - 重试模式(Retry Pattern)

微服务设计模式 - 重试模式&#xff08;Retry Pattern&#xff09; 定义 重试模式&#xff08;Retry Pattern&#xff09;是一种微服务中的设计模式&#xff0c;用于在临时性失败&#xff08;如网络故障或暂时不可用的服务&#xff09;发生时&#xff0c;自动重新尝试请求&…...

DNS配置

1.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 2.配置从DNS服务器&#xff0c;对主dns服务器进行数据备份。 正反向解析 [rootlocalhost ~]# vim /etc/named.conf options {listen-on port 53 { 192.168.111.130; };directory "/var/named&quo…...

【Linux指令】---获取进程的PID

获取进程的PID getpid()函数...

在centos中安装cmake

安装依赖工具: sudo yum install -y epel-release sudo yum groupinstall -y "Development Tools" sudo yum install -y wget wget 下载 CMake 3.24 的压缩包: wget https://github.com/Kitware/CMake/releases/download/v3.24.0/cmake-3.24.0-linux-x86_64.tar.gz …...

【补补漏洞吧 | 02】等保测评ZooKeeperElasticsearch未授权访问漏洞补漏方法

一、项目背景 客户新系统上线&#xff0c;因为行业网络安全要求&#xff0c;需要做等保测评&#xff0c; 通过第三方漏扫工具扫描系统&#xff0c;漏扫报告显示ZooKeeper和 Elasticsearch 服务各拥有一个漏洞&#xff0c;具体结果如下&#xff1a; 1、ZooKeeper 未授权访问【…...

Docker Compose一键部署Spring Boot + Vue项目

目录 前提条件 概述 Compose简介 Compose文件 Compose环境 Compose命令 帮助命令 关键命令 Compose部署项目 初始化环境 查看代码文件 sql数据准备 nginx配置文件准备 创建 compose.yaml 一键启动compose多个容器 浏览器访问虚拟机ip:80(可省略默认的80端口) …...