当前位置: 首页 > news >正文

划界与分类的艺术:支持向量机(SVM)的深度解析

划界与分类的艺术:支持向量机(SVM)的深度解析

1. 引言

支持向量机(Support Vector Machine, SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。


2. SVM的数学基础与直观理解

SVM的核心思想是找到一个超平面(Hyperplane),使得不同类别的样本尽可能地被正确划分,并最大化两类之间的间隔(Margin)

  • 支持向量:位于边界上并决定超平面的点。
  • 硬间隔(Hard Margin)与软间隔(Soft Margin):硬间隔严格要求数据可线性分割,而软间隔允许少量误分类以提升模型的鲁棒性。

优化目标
[ \min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \quad \text{subject to} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 ]

直观理解
SVM会在数据空间中找到一条“最宽”的分割线,并将其两侧的样本尽量远离超平面。


3. 核函数:解决非线性问题的利器

现实世界中的数据往往是非线性可分的。这时,SVM通过**核函数(Kernel Function)**将数据映射到高维空间,使其在新空间中线性可分。

常见的核函数:

  • 线性核(Linear Kernel):适用于线性可分数据。
  • 多项式核(Polynomial Kernel):用于捕捉数据之间的多项式关系。
  • 径向基核(RBF Kernel):适合处理复杂的非线性数据。
  • Sigmoid核:常用于神经网络。

代码示例:不同核的SVM实现

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC# 加载数据集
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)# 使用线性核
linear_svm = SVC(kernel='linear')
linear_svm.fit(X_train, y_train)
print("线性核测试集准确率:", linear_svm.score(X_test, y_test))# 使用RBF核
rbf_svm = SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)
print("RBF核测试集准确率:", rbf_svm.score(X_test, y_test))

4. SVM的优缺点

优点:

  1. 适用于高维数据:SVM在维度较高的数据集上表现良好。
  2. 支持非线性分类:通过核函数可以处理复杂的数据关系。
  3. 鲁棒性强:对噪声数据和小样本数据也能取得良好的效果。

缺点:

  1. 计算复杂度较高:数据规模较大时,训练速度较慢。
  2. 对参数敏感:C和γ等超参数需要仔细调优。
  3. 不适合大规模数据集:在数据量非常大的场景中表现不佳。

5. SVM的实战案例:文本分类

SVM常用于文本分类问题,例如垃圾邮件检测和情感分析。在这些场景中,文本通过TF-IDF向量化后,SVM可以在高维特征空间中高效分类。

代码示例:SVM用于垃圾邮件分类

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.datasets import fetch_20newsgroups# 加载新闻数据集
categories = ['alt.atheism', 'soc.religion.christian']
newsgroups_train = fetch_20newsgroups(subset='train', categories=categories)
newsgroups_test = fetch_20newsgroups(subset='test', categories=categories)# 构建TF-IDF和SVM的管道
model = make_pipeline(TfidfVectorizer(), SVC(kernel='linear'))
model.fit(newsgroups_train.data, newsgroups_train.target)# 测试准确率
accuracy = model.score(newsgroups_test.data, newsgroups_test.target)
print("文本分类的测试集准确率:", accuracy)

6. 超参数调优:C与γ的选择

  • C参数:控制间隔与误分类的权衡,C值大时倾向于将所有样本正确分类,但容易过拟合。
  • γ参数:定义样本的影响范围,γ值大时模型复杂度增加。

使用网格搜索来选择最佳的C和γ:

from sklearn.model_selection import GridSearchCVparam_grid = {'C': [0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1]}
grid = GridSearchCV(SVC(kernel='rbf'), param_grid, cv=5)
grid.fit(X_train, y_train)print("最佳参数:", grid.best_params_)
print("最佳得分:", grid.best_score_)

7. SVM的局限性与改进方向

  1. 大规模数据的挑战:在面对数十万级别的数据集时,SVM的计算速度和内存需求成为瓶颈。
    • 解决方案:使用分布式SVM或线性SVM(如LibLinear)。
  2. 多分类问题的处理:SVM本质上是二分类算法,需要扩展到多分类场景。
    • 解决方案:采用“一对多”或“一对一”策略。
  3. 解释性不足:SVM的核技巧虽强大,但增加了模型的黑箱性质。
    • 改进:通过SHAP值或LIME解释SVM模型。

8. 结论

支持向量机以其独特的数学优雅性和强大的分类能力,在许多领域发挥了重要作用。从简单的线性分类到复杂的非线性任务,SVM都展现了卓越的性能。然而,面对大数据集和高维数据时,其计算复杂度成为瓶颈,需要合理调优和改进。希望通过本文的讲解,读者能更好地理解SVM的工作原理,并能灵活应用于实际项目。


9. 未来展望

随着数据规模的不断增加和计算资源的提升,SVM算法也在不断演进,如分布式SVM、量子SVM等新兴方向。未来,SVM将在高维数据处理和小样本学习中扮演更加重要的角色。

如果你希望进一步探索SVM,推荐阅读**《Learning with Kernels》**这本经典书籍,它详细讲解了SVM的理论与实践。


这篇博客全面解析了SVM的工作原理、实现方法以及优化技巧,为你在项目中使用SVM提供了有力支持。如果文章有错误,可以在评论区指出,我会及时的回复大家,那么各位大佬们,我们下一篇文章见啦!
在这里插入图片描述

相关文章:

划界与分类的艺术:支持向量机(SVM)的深度解析

划界与分类的艺术:支持向量机(SVM)的深度解析 1. 引言 支持向量机(Support Vector Machine, SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分…...

题目:100条经典C语言笔试题目(1-5)

题目: 1、请填写 bool , float, 指针变量 与“零值”比较的if 语句。 提示:这里“零值”可以是 0, 0.0 , FALSE 或者“空指针” 。例如 int 变量 n 与“零值”比较的 if 语句为: (1)请写出bool flag 与“零值”比较…...

python代码编写规范及注意事项

目录 1. 注意1.1 变量与常量解释:建议的修复: 1.2 Too many arguments 和 Too many local variables解决方案1. 减少参数数量2. 减少局部变量数量3. 调整 Pylint 配置 总结 1. 注意 1.1 变量与常量 解读下面的pylint问题 C0103: Constant name “file_p…...

【Linux】命令行参数 | 环境变量

🪐🪐🪐欢迎来到程序员餐厅💫💫💫 主厨:邪王真眼 主厨的主页:Chef‘s blog 所属专栏:青果大战linux 总有光环在陨落,总有新星在闪烁 前几天在搞硬件&…...

python 使用进程池并发执行 SQL 语句

这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理,绕过 Python 的全局解释器锁(GIL)限制,从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…...

我也谈AI

“随着人工智能技术的不断发展,我们已经看到了它在各行业带来的巨大变革。在医疗行业中,人工智能技术正在被应用于病例诊断、药物研发等方面,为医学研究和临床治疗提供了新的思路和方法;在企业中,人工智能技术可以通过…...

算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝

大佬们好呀,这一次讲解的是二叉树的深度搜索,大佬们请阅 1.前言 ⼆叉树中的深搜(介绍) 深度优先遍历(DFS,全称为DepthFirstTraversal),是我们树或者图这样的数据结构中常⽤的⼀种…...

编写第一个 Appium 测试脚本:从安装到运行!

前言 最近接到一个测试项目,简单描述一下,需求就是:一端发送指令,另一端接受指令并处理指令。大概看了看有上百条指令,点点点岂不是废了,而且后期迭代,每次都需要点点点,想想就头大…...

mysql查表相关练习

作业要求: 单表练习: 1 . 查询出部门编号为 D2019060011 的所有员工 2 . 所有财务总监的姓名、编号和部门编号。 3 . 找出奖金高于工资的员工。 4 . 找出奖金高于工资 40% 的员工。 5 找出部门编号为 D2019090011 中所有财务总监,和…...

airtest+poco多脚本、多设备批处理运行测试用例自动生成测试报告

一:主要内容 框架功能、框架架构及测试报告效果 airtest安装、环境搭建 框架搭建、框架运行说明 框架源码 二:框架功能及测试报告效果 1. 框架功能: 该框架笔者用来作为公司的项目的前端自动化,支持pc和app,本文…...

Prometheus套装部署到K8S+Dashboard部署详解

1、添加helm源并更新 helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm repo update2、创建namespace kubectl create namespace monitoring 3、安装Prometheus监控套装 helm install prometheus prometheus-community/prome…...

python使用pymysql

为了封装这个数据库操作为一个通用方法,我们可以创建一个函数,该函数接受数据库连接参数(如主机名、用户名、密码、数据库名)、SQL语句以及必要的参数(用于参数化查询)。下面是一个简单的封装示例&#xff…...

Vue3 + TypeScript 组件和文件命名规范及 setup 导入顺序规范

前言 在 Vue3 项目中,合理的文件命名规范和导入顺序不仅有助于提高代码的可读性,还能增强团队协作的效率。特别是在使用 TypeScript 和 Composition API 的项目中,清晰的组件和文件结构尤为重要。本文将详细介绍 Vue3 TypeScript 项目中的组…...

netty之处理连接源码分析

写在前面 在这篇文章看了netty服务是如何启动的,服务启动成功后,也就相当于是迎宾工作都已经准备好了,那么当客人来了怎么招待客人呢?也就是本文要看的处理连接的工作。 1:正文 先启动源码example模块的echoserver&a…...

Dockerfile文件编写

1、打nginx原始包 登录后复制 ROM nginxENV LANG zh_CN.UTF-8 ENV LC_ALL zh_CN.UTF-8 ENV TZ Asia/Singapore# 设置时区,同样保持在一层 RUN ln -sf /usr/share/zoneinfo/${TZ} /etc/localtime && \echo "${TZ}" > /etc/timezoneRUN apt-get …...

Oracle SQL 使用 ROWNUM 分页查询速度太慢的问题及解决方案!

在使用 Oracle 数据库进行数据查询时,分页查询是一种常见的需求。传统上,开发者常常使用 ROWNUM 来实现分页功能。 然而,当数据量较大时,使用 ROWNUM 进行分页查询可能会导致性能问题。本文将深入探讨这一问题的原因,并提供多种解决方案,以提高分页查询的性能。 一、RO…...

Django3 + Vue.js 前后端分离书籍添加项目Web开发实战

文章目录 Django3后端项目创建切换数据库创建Django实战项目App新建Vue.js前端项目 Django3后端项目创建 创建Django项目,采用Pycharm或者命令行创建皆可。此处,以命令行方式作为演示,项目名为django_vue。 django-admin startproject djang…...

楼梯区域分割系统:Web效果惊艳

楼梯区域分割系统源码&数据集分享 [yolov8-seg-FocalModulation&yolov8-seg-GFPN等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global Al l…...

Day10加一

给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外,这个整数不会以零开头。 class Solution {public int[] plusOne(int[] di…...

UTF-8简介

UTF-8 UTF-8(8-bit Unicode Transformation Format)是一种针对Unicode的可变长度字符编码,也是一种前缀码。它可以用一至四个字节对Unicode字符集中的所有有效编码点进行编码,属于Unicode标准的一部分,最初由肯汤普逊…...

基于Openwrt系统架构,实现应用与驱动的实例。

一、在openwrt系统架构,编写helloworld的应用程序。 第一步先创建目录,项目代码要放在 openwrt根目下的 package 目录中,这里源码写在了 hellworld 的 src 目录下,因为外层还有需要编写的文件。 mkdir -p ~/openwrt/package/hel…...

SQL进阶技巧:如何利用三次指数平滑模型预测商品零售额?

目录 0 问题背景 1 数据准备 2 问题解决 2.1 模型构建 (1)符号规定 (2)基本假设...

HTB:Cicada[WriteUP]

目录 连接至HTB服务器并启动靶机 使用nmap对靶机进行开放端口扫描 使用nmap对靶机开放端口进行脚本、服务信息扫描 首先尝试空密码连接靶机SMB服务 由于不知道账户名,这里我们使用crackmapexec对smb服务进行用户爆破 通过该账户连接至靶机SMB服务器提取敏感信…...

小张求职记四

学校食堂的装修富丽堂皇,像个金碧辉煌的宫殿,可实际上却充斥着廉价的塑料制品和刺鼻的消毒水味。这金玉其外败絮其中的景象,与食堂承包商的“精明算计”如出一辙。 小张和小丽应约来到了一个档口下,“红烧肉”,之前就是…...

适用于 c++ 的 wxWidgets框架源码编译SDK-windows篇

本文章记录了下载wxWidgets源码在windows 11上使用visual Studio 2022编译的全过程,讲的不详细请给我留言,让我知道错误并改进。 本教程是入门级。有更深入的交流可以留言给我。 如今互联网流行现在大家都忘记了这块桌面的开发,我认为桌面应用还是有用武之地,是WEB无法替代…...

flink 内存配置(二):设置TaskManager内存

TaskManager在Flink中运行用户代码。根据需要配置内存使用,可以极大地减少Flink的资源占用,提高作业的稳定性。 注意下面的讲解适用于TaskManager 1.10之后的版本。与JobManager进程的内存模型相比,TaskManager内存组件具有类似但更复杂的结构…...

【C++ 算法进阶】算法提升八

复杂计算 (括号问题相关递归套路 重要) 题目 给定一个字符串str str表示一个公式 公式里面可能有整数 - * / 符号以及左右括号 返回最终计算的结果 题目分析 本题的难点主要在于可能会有很多的括号 而我们直接模拟现实中的算法的话code会难写 要考虑…...

阿里云实时数据仓库HologresFlink

1. 实时数仓Hologres特点 专注实时场景:数据实时写入、实时更新,写入即可见,与Flink原生集成,支持高吞吐、低延时、有模型的实时数仓开发,满足业务洞察实时性需求。 亚秒级交互式分析:支持海量数据亚秒级交…...

生成式语言模型的文本生成评价指标(从传统的基于统计到现在的基于语义)

文本生成评价指标 以 BLEU 为代表的基于统计的文本评价指标基于 BERT 等预训练模型的文本评价指标 1.以 BLEU 为代表的基于统计的文本评价指标 1.BLEU(Bilingual Evaluation Understudy, 双语评估辅助工具) 所有评价指标的鼻祖,核心思想是比较 候选译文 和 参考…...

【网安案例学习】暴力破解攻击(Brute Force Attack)

### 案例与影响 暴力破解攻击在历史上曾导致多次重大安全事件,特别是在用户数据泄露和账户被盗的案例中。随着计算能力的提升和密码管理技术的进步,暴力破解的威胁虽然有所减弱,但仍需警惕,特别是在面对高价值目标时。 【故事一…...