冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现
常见排序算法实现
冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现
文章目录
- 常见排序算法实现
- 冒泡排序
- 选择排序
- 计数排序
- 插入排序
- 快速排序
- 堆排序
- 归并排序
冒泡排序
冒泡排序算法,对给定的整数数组进行升序排序。冒泡排序是一种简单的排序算法,通过多次遍历数组并相邻元素比较与交换来排列数组。代码最后将排序后的数组打印到控制台上,输出结果为:1 2 3 5 8 9。
public class BubbleSort {public static void main(String[] args) {int[] arr = {5, 2, 8, 3, 9, 1};bubbleSort(arr);for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}}public static void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// swap arr[j] and arr[j+1]int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}
}
选择排序
选择排序算法,其主要功能是对一个整数数组进行升序排序。选择排序的基本思想是每次从未排序部分中选择最小元素,将其放在已排好序的部分的末尾。该算法的时间复杂度为 O(n²),在数据量较小的情况下性能较为优秀。最终,排序后的数组会被打印输出。
public class SelectionSort {public static void main(String[] args) {int[] arr = {5, 2, 8, 3, 9, 1};selectionSort(arr); // sorting the array in ascending orderfor (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}}public static void selectionSort(int[] arr) {for (int i = 0; i < arr.length - 1; i++) {int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}if (minIndex!= i) {int temp = arr[i]; // swapping the elementsarr[i] = arr[minIndex];arr[minIndex] = temp;}}}
}
计数排序
计数排序是一种非比较排序算法,主要用于对范围较小的整数集合进行排序。其主要功能是对给定的整数数组 arr 进行从小到大的排序。该算法的时间复杂度为 O(n + k),其中 n 是数组元素的个数,k 是最大元素的值,适合用于处理大量重复值的数据集。
public class CountingSort {public static void main(String[] args) {int[] arr = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5};int max = 9;int[] count = new int[max + 1];int[] output = new int[arr.length];// Step 1: Count the frequency of each elementfor (int i = 0; i < arr.length; i++) {count[arr[i]]++;}// Step 2: Calculate the cumulative sum of the frequencyfor (int i = 1; i <= max; i++) {count[i] += count[i - 1];}// Step 3: Place each element in its correct position in the output arrayfor (int i = arr.length - 1; i >= 0; i--) {output[count[arr[i]] - 1] = arr[i];count[arr[i]]--;}// Step 4: Copy the output array to the original arrayfor (int i = 0; i < arr.length; i++) {arr[i] = output[i];}// Print the sorted arrayfor (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}}
}
插入排序
插入排序算法,其主要功能是对一个随机生成的整数数组进行排序。插入排序是一种简单直观的排序算法,适合于小规模的数组,时间复杂度为 O(n^2)。通过不断将未排序的元素插入到已排序部分的合适位置,最终得到一个升序排列的数组。代码中的 main 方法演示了如何使用这个方法并输出排序结果。
public class InsertionSort {public static void main(String[] args) {int[] arr = {5, 2, 4, 6, 1, 3};insertionSort(arr);for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}}public static void insertionSort(int[] arr) {for (int i = 1; i < arr.length; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}}
}
快速排序
快速排序算法,其主要功能是对一个整数数组进行排序。快速排序是一种高效的排序算法,其平均时间复杂度为 O(n log n)。该代码通过选择支点(通常是数组的最后一个元素),然后将数组分为两个子数组,递归地对这两个子数组进行排序,最终得到一个有序的数组。打印输出展示了排序结果。
public class QuickSort {public static void main(String[] args) {int[] arr = {5, 2, 8, 3, 9, 1, 7, 4, 6};quickSort(arr, 0, arr.length - 1);for (int i : arr) { System.out.print(i + " "); }}public static void quickSort(int[] arr, int left, int right) {if (left < right) {int pivotIndex = partition(arr, left, right);quickSort(arr, left, pivotIndex - 1);quickSort(arr, pivotIndex + 1, right);}}public static int partition(int[] arr, int left, int right) {int pivot = arr[right];int i = left - 1;for (int j = left; j < right; j++) {if (arr[j] < pivot) {i++;int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}int temp = arr[i + 1];arr[i + 1] = arr[right];arr[right] = temp;return i + 1;}
}
堆排序
堆排序的主要功能:将一个整数数组排序。堆排序的过程包括建立最大堆并逐步将最大元素移动到数组的末尾,最终得到升序排列的数组。整个算法的时间复杂度为 O(n log n),空间复杂度为 O(1)。堆排序是一种不稳定的排序算法。
public class HeapSort {public static void sort(int[] arr) {int n = arr.length;for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);for (int i = n - 1; i >= 0; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;heapify(arr, i, 0);}}private static void heapify(int[] arr, int n, int i) {int largest = i;int l = 2 * i + 1;int r = 2 * i + 2;if (l < n && arr[l] > arr[largest])largest = l;if (r < n && arr[r] > arr[largest])largest = r;if (largest!= i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;heapify(arr, n, largest);}}
}
归并排序
归并排序是一种有效的排序算法,采用分治法的思想,将待排序的数组递归地分成两半,直至每个子数组只有一个元素,然后再将这些子数组合并为一个有序的整体。最终该程序能够将输入的数组 {5, 2, 8, 3, 9, 1, 7, 4, 6} 排序并打印输出。归并排序的时间复杂度为O(nlogn) 使其在处理大型数据集时十分高效。
public class MergeSort {public static void main(String[] args) {int[] arr = {5, 2, 8, 3, 9, 1, 7, 4, 6};mergeSort(arr, 0, arr.length - 1);for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}}public static void mergeSort(int[] arr, int left, int right) {if (left < right) {int mid = (left + right) / 2;mergeSort(arr, left, mid);mergeSort(arr, mid + 1, right);merge(arr, left, mid, right);}}public static void merge(int[] arr, int left, int mid, int right) {int[] temp = new int[right - left + 1];int i = left;int j = mid + 1;int k = 0;while (i <= mid && j <= right) {if (arr[i] <= arr[j]) {temp[k++] = arr[i++];} else {temp[k++] = arr[j++];}}while (i <= mid) {temp[k++] = arr[i++];}while (j <= right) {temp[k++] = arr[j++];}for (i = left; i <= right; i++) {arr[i] = temp[i - left];}}
}
相关文章:
冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现
常见排序算法实现 冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现 文章目录 常见排序算法实现冒泡排序选择排序计数排序插入排序快速排序堆排序归并排序 冒泡排序 冒泡排序算法,对给定的整数数组进行升序排序。冒泡排序是一种简单…...
SQL CASE表达式与窗口函数
CASE 表达式是一种通用的条件表达式,类似于其他编程语言中的if/else语句。 窗口函数类似于group by,但是不会改变记录行数,能扫描所有行,能对每一行执行聚合计算或其他复杂计算,并把结果填到每一行中。 1 CASE 表达式…...
基于SpringBoot的植物园管理小程序【附源码】
基于SpringBoot的植物园管理小程序 效果如下: 系统登录页面 管理员主页面 商品订单管理页面 植物园信息管理页面 小程序主页面 小程序登录页面 植物信息查询推荐页面 研究背景 随着互联网技术的快速发展和移动设备的普及,线上管理已经成为各行各业提高…...
asp.net网站项目如何设置定时器,定时获取数据
在 Global.asax.cs 文件中编写代码来初始化和启动定时器。Global.asax.cs 文件定义了应用程序全局事件,比如应用程序的启动和结束。在这里,我们将在应用程序启动时初始化和启动定时器。 using System; using System.Timers;public class Global : Syste…...
单元/集成测试解决方案
在项目开发的前期针对软件单元/模块功能开展单元/集成测试,可以尽早地发现软件Bug,避免将Bug带入系统测试阶段,有效地降低HIL测试的测试周期,也能有效降低开发成本。单元/集成测试旨在证明被测软件实现其单元/架构设计规范、证明被…...
高效作业跟踪:SpringBoot作业管理系统
1 绪论 1.1 研究背景 现在大家正处于互联网加的时代,这个时代它就是一个信息内容无比丰富,信息处理与管理变得越加高效的网络化的时代,这个时代让大家的生活不仅变得更加地便利化,也让时间变得更加地宝贵化,因为每天的…...
keepalived + nginx 实现网站高可用性(HA)
keepalive 一、keepalive简介二、实现步骤1. 环境准备2. 安装 Keepalived3. 配置 Keepalived 双机主备集群架构4. 配置 Nginx5. 启动Keepalived6. 测试高可用性7. 配置keepalived 双主热备集群架构 三、虚拟ip 一、keepalive简介 目前互联网主流的实现WEB网站及数据库服务高可用…...
有哪些编辑器,怎样选择编辑器
1. Visual Studio Code (VSCode) 特点: 轻量级且强大:启动速度快,占用资源少,但功能强大。跨平台:支持 Windows、macOS 和 Linux。丰富的扩展生态:拥有庞大的扩展市场,可以安装各种插件来扩展功…...
软件系统开发
目录 软件开发方法 软件开发生命周期 软件开发模型 敏捷方法 敏捷型方法两个特点 敏捷方法的核心思想三点 4个核心价值观 主要敏捷方法 RUP RUP的核心特点: RUP软件开发生命周期 9个核心工作流 RUP裁剪 软件系统工具 软件开发工具 需求分析工具 设计…...
浅谈RPC的实现原理与RPC实战
浅谈RPC的实现原理与RPC实战 什么是RPC?RPC框架基本原理gRPC框架介绍Http/2ProtoBuf gRPC实战一、创建项目二、导入依赖三、编写proto文件编写服务端编写客户端 什么是RPC? RPC(Remote Procedore Call),及远程过程调用,是一种在分布式系统中用于进程间…...
算法|牛客网华为机试31-40C++
牛客网华为机试 上篇:算法|牛客网华为机试21-30C 文章目录 HJ31 单词倒排HJ32 密码截取HJ33 整数与IP地址间的转换HJ34 图片整理HJ35 蛇形矩阵HJ36 字符串加密HJ37 统计每个月兔子的总数HJ38 求小球落地5次后所经历的路程和第5次反弹的高度HJ39 判断两个IP是否属于同…...
Mysql 大表limit查询优化原理
优化前( 查询耗时 114.1s) explain select * from link_exec_task limit 80000, 10 # 查询耗时 114.1s优化后( 查询耗时 0.121s) explain select * from link_exec_task a INNER JOIN (select id from link_exec_task limit 80000, 10) b on a.id b.id #0.121s原理&…...
封装axios、环境变量、api解耦、解决跨域、全局组件注入
官网:Axios中文文档 | Axios中文网 安装:npm install axios axios封装: // 1. 引入axios import axios from "axios"; import storage from /utils/storage // 2. 创建axios实例 const instance axios.create({baseURL: proces…...
CDGP|数据治理于企业而言到底有什么用?
在当今数字化时代,数据已成为企业最重要的资产之一。无论是大型跨国公司还是初创型企业,数据都扮演着驱动决策、优化运营和推动创新的关键角色。然而,仅仅拥有大量的数据并不足以确保企业的成功。如何有效管理、整合和利用这些数据࿰…...
Java学习教程,从入门到精通,Java数组(Arrays)语法知识点及案例(19)
1、Java数组(Arrays)语法知识点及案例 一、数组的基本概念 数组是多个相同类型的数据按照一定的顺序排列的集合,使用一个名字命名,通过编号(索引)的方式对这些数据进行统一管理。数组是引用数据类型&…...
11.4OpenCV_图像预处理习题02
1.身份证号码识别(结果:身份证号识别结果为:911124198108030024) import cv2 import numpy as np import paddlehub as hubdef get_text():img cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img cv2.cvt…...
go的template示例
模板定义: type Config struct {{{- $len : len .DbConfigs -}}{{- $i : 0 -}}{{- range $key, $value : .DbConfigs}}{{title $key}} *DbConfig "yaml:\"{{lower $key}}\"" {{if lt $i (sub $len 1)}},{{end}}{{- $i add $i 1 -}}{{- end…...
『YOLO』| 断点训练、解决训练中断异常情况
文章目录 方法一方法二 当yolo在训练的时候,如果训练中断或者出现异常,可通过修改代码,从上一次断掉处重新训练,实现断点续训。 方法一 第一种方法: 按照官方给出的恢复训练代码,用yolo命令格式ÿ…...
MQTT+Disruptor 提高物联网高并发
基于springboot2.5.7 废话不多说,直接上干货: Slf4j Configuration EnableConfigurationProperties(MqttProperties.class) IntegrationComponentScan(basePackages {"扫描包路径","扫描包路径"}) public class MqttAutoConfig {…...
SpringBoot项目集成ONLYOFFICE
ONLYOFFICE 文档8.2版本已发布:PDF 协作编辑、改进界面、性能优化、表格中的 RTL 支持等更新 文章目录 前言ONLYOFFICE 产品简介功能与特点Spring Boot 项目中集成 OnlyOffice1. 环境准备2. 部署OnlyOffice Document Server3. 配置Spring Boot项目4. 实现文档编辑功…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...
